
Analysis I (English)
Roberto Svaldi and Stefano Filipazzi
Fall Semester 2021–2022

Analysis 1 - Exercise Set 12

Remember to check the correctness of your solutions whenever possible.

To solve the exercises you can use only the material you learned in the course.

1. Find the Taylor expansion of order n at x = 0 of the following functions.

(a) f(x) = esin(x), n = 4

(b) f(x) =
√

1 + sin(x), n = 3

Solution:

(a) We use the 3rd order Taylor expansion around the point x = 0 of the exponential
function which is valid for all x ∈ R

ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+ x4ε(x) and sin(x) = x− x3

3!
+ x4ε(x).

So

esin(x) = 1 +

(
x− x3

6
+ x4ε(x)

)
+

1

2

(
x− x3

6
+ x4ε(x)

)2

+
1

6

(
x− x3

6
+ x4ε(x)

)3

+
1

24

(
x− x3

6
+ x4ε(x)

)4

+ x4ε(x)

= 1 +

(
x− x3

6

)
+

1

2

(
x2 − x4

3

)
+

1

6
x3 +

1

24
x4 + x4ε(x)

= 1 + x+
x2

2
− x4

8
+ x4ε(x) .

(b) The 3rd order Taylor expansion around the point x = 0 of sin(x) and (1+ y)1/2 are

sin(x) = x− x3

6
+ x3ε(x) and

√
1 + y = 1 +

y

2
− y2

8
+

y3

16
+ y3ε(y) .

where by substituting y = sin(x), we get

√
1 + sin(x) = 1 +

1

2

(
x− x3

6
+ x3ε(x)

)
− 1

8

(
x− x3

6
+ x3ε(x)

)2

+
1

16

(
x− x3

6
+ x3ε(x)

)3

+ x3ε(x)

= 1 +
1

2

(
x− x3

6

)
− 1

8
x2 +

1

16
x3 + x3ε(x)

= 1 +
x

2
− x2

8
− x3

48
+ x3ε(x) .



2. For each one of the following functions, determine whether the funciton is differentiable at
x = 0. If yes, also compute the derivative at x = 0:

(a) f(x) =

{
x+ 1, x ≥ 0

x, x < 0
;

(b) f(x) =

{
x2, x ≥ 0

x3, x < 0
;

(c) f(x) =


sin(x)−x

x , x > 0

0, x = 0
cos(x)− x2

2

x4 , x < 0

.

Solution:

(a) The function is not continuous at 0, as the limit from the right is 1 and the limit from
the left is 0. As a differentiable function is continuous, then f is not differentiable
at 0.

(b) We claim that the function is differentiable at 0 with derivative f ′(0) = 0. Indeed,
we compute

lim
h→0+

f(0 + h)− f(0)

h
= lim

h→0+

h2 − 0

h
= lim

h→0+
h = 0.

Similarly, we have

lim
h→0−

f(0 + h)− f(0)

h
= lim

h→0−

h3 − 0

h
= lim

h→0−
h2 = 0.

Since the left-hand limit and the right-hand limit exist and agree, we conclude that

lim
h→0

f(0 + h)− f(0)

h
= 0.

Thus, f is differentiable at 0 with f ′(0) = 0.

(c) We claim that the function is not continuous at 0. Then, if that is the case, we can
conclude as in case (a). One can see that limx→0+ f(x) = 0 = f(x). Yet, it suffices
to show that limx→0− f(x) ̸= 0 = f(0). To this end, we compute the limit

lim
x→0−

f(x) = lim
x→0−

cos(x)− x2

2

x4
= +∞

as the limit of the numerator is 1, while the denominator goes to 0 from above
(hence the sign + for ∞).

3. Find the vertical and horizontal asymptotes of the function f : R\{0} → R, f(x) = 1
x .

Solution: A vertical asymptotes cannot exist in a point where the function is defined, so
here potentially x = 0 is a candidate for a vertical asymptote. In fact, we have

lim
x→0+

f(x) = lim
x→0+

1

x
= +∞ and lim

x→0−
f(x) = lim

x→0−

1

x
= −∞.
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So f has a vertical asymptote at x = 0.

A horizontal asymptote (if it exists) is characterized by the limit of the function f at
infinity (±∞). Here we have

lim
x→+∞

f(x) = lim
x→+∞

1

x
= 0 et lim

x→−∞
f(x) = lim

x→−∞

1

x
= 0

So indeed f has an horizontal asymptote at y = 0.

4. State if the following statements are true or false. Let f, g : I → R be two convex functions,
where I ⊂ R is some interval. If it is true, prove it. If not, give a counter example.

(a) The function f + g is convex.

(b) The function h = f · g is convex.

(c) If g is increasing then the function h = g ◦ f is convex.

Solution:

(a) True. Using the definition we have

(f + g)(λa+ (1− λ)b) = f(λa+ (1− λ)b) + g(λa+ (1− λ)b)

≤ λf(a) + (1− λ)f(b) + λg(a) + (1− λ)g(b)

= λ(f + g)(a) + (1− λ)(f + g)(b)

So f + g is convex.

(b) False. Take for example f(x) = −
√
x and g(x) = 1/x on I =]0,+∞[. Then we have

h = f · g = − 1√
x
which is a concave function. So in general if f and g are convex

functions, we cannot say much about f · g.

(c) True. Note that if f is convex then f(λa + (1 − λb)) ≤ λf(a) + (1 − λ)f(b) now
take x1 = f(λa+ (1− λb)) and x2 = λf(a) + (1− λ)f(b). Since g is increasing and
x1 ≤ x2 then g(x1) ≤ g(x2). Finally, using convexity of g we can write:

g(x1) ≤ g(x2) ⇒ g(f(λa+(1−λb))) ≤ g(λf(a)+(1−λ)f(b)) ≤ λg(f(a))+(1−λ)g(f(b))

Or we can write:
h(λa+ (1− λ)b) ≤ λh(a) + (1− λ)h(b)

so h is convex.

5. Consider f : ]a, b[7→ R. Let g : ]c, d[7→ R be the restriction to f to the interval ]c, d[⊂]a, b[, i.e.,
f(x) = g(x) ∀x ∈]c, d[. Show that

(a) If f ∈ Cn(]a, b[,R) then g ∈ Cn(]c, d[,R).
(b) If f is Lipschitz continuous, then g is Lipschitz continuous.

Solution:
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(a) Note that ∀x ∈]c, d[ we have g(k)(x) = f (k)(x) ∀k = 1, · · · , n which shows g ∈
Cn(c, d).

(b) Since f is Lipschitz continuous with constant L we have ∀x, y ∈]c, d[, |g(x) −
g(y)| = |f(x)− f(y)| ≤ L|x− y|. Hence, g is Lipschitz continuous.

6. Find the local extrema and the absolute maximum and minimum of f(x) = x2 −
∣∣x+ 1

4

∣∣+1
in [−1, 1].

Solution: Before calculating the derivatives, we rewrite f by distinguishing two cases.
we have

f(x) =

{
x2 + x+ 5

4 , −1 ≤ x ≤ − 1
4

x2 − x+ 3
4 , − 1

4 < x ≤ 1
, f ′(x) =

{
2x+ 1 , −1 < x < − 1

4

2x− 1 , − 1
4 < x < 1

For x0 = − 1
4 we have

f ′
r(x0) = lim

x→x0
+

f(x)− f(x0)

x− x0
= lim

x→− 1
4
+

x2 − x− 5
16

x+ 1
4

= lim
x→− 1

4
+

(
x− 5

4

) (
x+ 1

4

)
x+ 1

4

= −3

2

f ′
l (x0) = lim

x→x0
−

f(x)− f(x0)

x− x0
= lim

x→− 1
4
−

x2 + x+ 3
16

x+ 1
4

= lim
x→− 1

4
−

(
x+ 3

4

) (
x+ 1

4

)
x+ 1

4

=
1

2

and so f is not differentiable in this point. Also f ′′(x) = 2 For all x ∈
]
−1,− 1

4

[
∪
]
− 1

4 , 1
[
.

So local and absolute extrema are listed bellow:

(a) Stationary points: f ′(x) = 0 ⇒ x1 = − 1
2 or x2 = 1

2 . Since f ′′(x1) = f ′′(x2) >
0, x1 and x2 are local minimums. We have f(x1) = 1 and f(x2) =

1
2 .

(b) Points where f ′ does not exist: The only point is x0 = − 1
4 since we have f ′

r(x0) =
− 3

2 and f ′
l (x0) =

1
2 . Looking at the sign of the derivative at x0 we deduce that

this point is a local maximum. We have f(x0) =
17
16 .

(c) Boundaries of the domain: Since f is continuous on [−1, 1], we look at the sign of
f ′ in the boundaries of [−1, 1] and notice that f has local maximums at a = −1 and
b = 1. We have f(a) = 5

4 and f(b) = 3
4 .

(a), (b), (c) ⇒

{
global maximum at x = −1, f(−1) = 5

4

global minimum at x = 1
2 , f

(
1
2

)
= 1

2

7. Let a, b ∈ R, a < b. Let f :]a, b[→ R be a differentiable function. State if the following
statements are true or false. If it is true, prove it. If not, give a counter example.

(a) If f ′ is bounded, then f is Lipschitz continuous with Lipschitz contstant k = supx∈]a,b[ |f ′(x)|.
(b) If f is Lipschitz continuous, then it is uniformly continuous.

(c) If f ′ is bounded then f is uniformly continuous.

Solution:
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(a) True. We use the Mean Value Theorem as follows. For every x < y in ]a, b[ there
exists c ∈ [x, y] such that f(y)− f(x) = f ′(c)(y − x). Hence

|f(y)− f(x)| = |f ′(c)||y − x| ≤ k|y − x|.

(b) True. Let k ≥ 0 such that f is Lipschitz continuous with constant k. Let ε > 0 and
x, y ∈]a, b[. We compute that

|f(x)− f(y)| ≤ k|x− y| ≤ ε

holds if |x− y| ≤ ε
k . So f is uniformly continuous with δ := ε

k .

(c) True. Combine the previous statements.

8. Study the function f(x) =
x

x2 − 1
and sketch its graph (domain, range, symmetries, roots, con-

tinuity, differentiability, stationary points, extrema, convexity, inflection points, asymptotes).

Solution:

(a) D(f) = R \ {−1, 1}, Im(f) = R

(b) Odd, non-periodic

(c) f(x) = 0 ⇔ x = 0

(d) f is continuous since it is composition of continuous functions on D(f).

(e) f is differentiable on D(f)

f ′(x) = − x2 + 1

(x2 − 1)
2 , D(f ′) = D(f) and f ′′(x) =

2x
(
x2 + 3

)
(x2 − 1)

3 , D(f ′′) = D(f)

(f) • f ′(x) < 0 for all x ∈ D(f ′), so there are no stationary points.

• f ′′(x) = 0 ⇔ x = 0. We also calculate f ′′′:

f ′′′(x) = −6(x4 + 6x2 + 1)

(x2 − 1)4
< 0 for all x ∈ D(f).

Since f ′′′(0) = −6 ̸= 0, f has an inflection point in x = 0.

(g) • Monotonicity:
x ]−∞,−1[ ]− 1, 1[ ]1,∞[
f ′ < 0 < 0 < 0
f decreasing decreasing decreasing

Note that f is strictly decreasing in the intervals in the table but not on the
entire domain D(f).

• Convexity and concavity:

x ]−∞,−1[ ]− 1, 0[ ]0, 1[ ]1,∞[
f ′′ < 0 > 0 < 0 > 0
f concave convex concave convex
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(h) • Vertical asymptotes: f is not defined in x = ±1 and we have lim
x→−1+

f(x) =

lim
x→1+

f(x) = ∞ also lim
x→−1−

f(x) = lim
x→1−

f(x) = −∞, so there of vertical

asymptotes at x = ±1 .

• horizontal asymptotes: lim
x→±∞

f(x) = 0 , so one horizontal asymptote at y = 0 .

9. Let f : [0, 1] → R be defined by f(x) = ex. Compute the upper and lower Darboux sums for
the regular partitions σn. Is f integrable?

Solution: The regular partition σn of the interval [0, 1] is 0, 1
n ,

2
n , . . . ,

n−1
n , n

n = 1. Since
the function ex is increasing, we have

Sσn
=

n∑
i=1

(
inf

x∈[ i−1
n , i

n ]
f(x)

)(
i

n
− i− 1

n

)
=

n∑
i=1

e
i−1
n

1

n
=

1

n

n∑
i=1

(e
1
n )i−1 =

1

n

e− 1

e
1
n − 1

,

Sσn
=

n∑
i=1

(
sup

x∈[ i−1
n , i

n ]

f(x)

)(
i

n
− i− 1

n

)
=

n∑
i=1

e
i
n
1

n
=

e
1
n

n

n∑
i=1

(e
1
n )i−1 =

e
1
n

n

e− 1

e
1
n − 1

.

We want to compute the limits limn→+∞ Sσn
and limn→+∞ Sσn , but we compute first

limn→+∞ n(e
1
n − 1). We observe that since the function f is differentiable, we have

lim
n→+∞

n(e
1
n − 1) = lim

n→+∞

f( 1n )− f(0)
1
n − 0

= f ′(0) = 1

Then

lim
n→+∞

Sσn
= lim

n→+∞

1

n

e− 1

e
1
n − 1

= (e− 1)( lim
n→+∞

n(e
1
n − 1))−1 = e− 1

lim
n→+∞

Sσn
= lim

n→+∞

e
1
n

n

e− 1

e
1
n − 1

= (e− 1)( lim
n→+∞

e
1
n )( lim

n→+∞
n(e

1
n − 1))−1 = e− 1

Since
lim

n→+∞
Sσn

≤ S ≤ S ≤ lim
n→+∞

Sσn

we obtain that S = S and the function f is integrable.

10. State if the following statements are true or false. If it is true, prove it. If not, give a counter
example. Let f : R → R be a continuous function on [a, b] ⊂ D(f), a < b, and differentiable
on ]a, b[ .

(a) If f ′(x) ≥ 0 for all x ∈ ]a, b[ , then f is increasing on [a, b].

(b) If f is increasing on [a, b], then f ′(x) ≥ 0 for all x ∈ ]a, b[ .

(c) If f is strictly increasing on [a, b], then f ′(x) > 0 for all x ∈ ]a, b[ .

(d) If f ′(x) > 0 for all x ∈ ]a, b[ , then f is strictly increasing on [a, b].

(e) If lim
x→a+

f ′(x) = ℓ exists, then f is differentiable from right at a and the right derivative

is f ′
d(a) = ℓ.
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Solution:

(a) True. Direct consequence of f ′(x) ≥ 0 and MVT.

(b) True. For all x ∈ ]a, b[ , the derivative of f is defined by

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

Since f is increasing on [a, b], f(x+h)−f(x) has the same sign as h. So the quotient
inside the limit is always positive so f ′(x) ≥ 0 .

(c) False. Take for example f : [−1, 1] → R defined by f(x) = x3. This function is
strictly increasing on [−1, 1] but f ′(0) = 0.

(d) True. Direct consequence of f ′(x) > 0 and MVT.

(e) True. We want to compute f ′
d(a), which by definition is

lim
x→a+

f(x)− f(a)

x− a

By the mean value theorem, for every x ∈ ]a, b[ there exists c = c(x) ∈ ]a, x[ such
that

f(x)− f(a)

x− a
= f ′(c(x))

(Let us notice that c(x) is a function of x, a fancy function but still a function; and
let us stress again that a ≤ c(x) ≤ x).

To conclude the exercise we just have to show that

lim
x→a+

f ′(x) = lim
x→a+

f ′(c(x)) ,

This follows from the definition of limit and the fact that a ≤ c(x) ≤ x. Indeed,
we have to show that for every ϵ ther exists a δ such that if |a − x| < δ then
|ℓ − f(c(x))| ≤ ϵ. We know that there exists δ such that if |a − x| < δ then
|ℓ − f(x)| ≤ ϵ, but for this very same δ we also have that |a − c(x)| ≤ δ, so
|ℓ− f(c(x))| ≤ ϵ, and this prove the claim.

11. Using the definition of convex functions, show that the function f(x) = x2 is convex.

Solution: We must show that for any λ ∈ [0, 1] and a, b ∈ Df = R we have

f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b)

for convex functions and

f(λa+ (1− λ)b) ≥ λf(a) + (1− λ)f(b)

for concave functions.

We have
f(λa+ (1− λ)b)− (λf(a) + (1− λ)f(b))

= λ2a2 + (1− λ)2b2 + 2λ(1− λ)ab− λa2 − (1− λ)b2

= −λ(1− λ)a2 − λ(1− λ)b2 + 2λ(1− λ)ab

= −λ(1− λ)(a− b)2 ≤ 0
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The last equality is true for all λ ∈ [0, 1]. So the function is convex.

12. Find the local extrema and the absolute maximum and minimum of f(x) = (x−1)2−2 |2− x|
in ]2, 3[

Solution: Since 2 − x < 0 for all x ∈ ]2, 3[ =: I, there is no need for distinguishing two
cases for f . We have

f(x) = (x− 1)2 + 2(2− x) = x2 − 4x+ 5 and f ′(x) = 2(x− 2) for all x ∈ I

The local and global extrema are listed below:

(a) Stationary points: f ′(x) ̸= 0 for all x ∈ I, so no stationary points.

(b) Points where f ′ does not exist: f ′ exists on I.

(c) Boundaries of the domain: The domain I is an open interval and so f does not take
any extrema.

So the function f does not have any local or global extrema on I

13. Show that the following functions are Lipschitz continuous on the given domain.

(a) f(x) = |x|, f : R → R.
(b) f(x) =

√
x, f : [a,∞[→ R, a > 0.

(c) f(x) = xn, f : [a, b] → R, a, b ∈ R, a < b.

Solution:

(a) We need to find L > 0 such that |f(x) − f(y)| ≤ L|x − y| for all x, y in R. By
applying the reversed triangle inequality:

|f(x)− f(y)| = ||x| − |y||
≤ |x− y|

We conclude that f(x) = |x| is Lipschitz continuous with L = 1.

(b) For all x, y ∈ [a,∞[ we can write

|f(x)− f(y)| =
∣∣√x−√

y
∣∣

=

∣∣∣∣(√x−√
y
) √y +

√
x

√
y +

√
x

∣∣∣∣
=

∣∣∣∣ x− y
√
y +

√
x

∣∣∣∣
=

|x− y|
√
y +

√
x

≤|x− y|
2
√
a

So with L = 1
2
√
a
we conclude that f(x) =

√
x is Lipshitz continuous.
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(c) We first prove it for [a, b] = [−1, 1]. For all x, y ∈ [−1, 1] we have

|f(x)− f(y)| = |xn − yn|

= |x− y| ·

∣∣∣∣∣
n−1∑
k=0

xn−k−1yk

∣∣∣∣∣
≤ |x− y| ·

n−1∑
k=0

∣∣xn−k−1
∣∣ ∣∣yk∣∣

≤ |x− y| ·
n−1∑
k=0

1

=n · |x− y|

Now for the general interval I = [−R,R] we can write:

|f(x)− f(y)| = |xn − yn|

= |x− y| ·

∣∣∣∣∣
n−1∑
k=0

xn−k−1yk

∣∣∣∣∣
≤ |x− y| ·

n−1∑
k=0

∣∣xn−k−1
∣∣ ∣∣yk∣∣

= |x− y| ·
n−1∑
k=0

|x|n−k−1 |y|k

≤ |x− y| ·
n−1∑
k=0

|R|n−k−1 |R|k

≤ |x− y| ·
n−1∑
k=0

|R|n−1

=nRn−1 |x− y|

Thus for any interval I = [a, b], there exists an R ∈ R such that [a, b] ⊂ [−R,R], so
f(x) = xn is Lipschitz continuous.

Alternatively, we can consider f ′(x) = nxn−1. Since f ′ is continuous everywhere,
it achieves maximum and minimum on the closed and bounded interval [a, b]. In
particular, f ′ is bounded on [a, b]. Then, we can conclude by Exercise 7.

14. Study the function f(x) =
3x2 − x

2x− 1
and sketch its graph (domain, range, symmetries, roots,

continuity, differentiability, stationary points, extrema, convexity, inflection points, asymp-
totes).

Solution:

(a) D(f) = R \ 1
2 , Im(f) = R \

]
1−

√
3
2 , 1 +

√
3
2

[
(b) not even, not odd and not periodic.

(c) f(x) = 0 ⇔ 3x2 − x = 0 ⇔ x = 0 or x = 1
3 .
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(d) Continuous on D(f) (composition of continuous functions)

(e) f is differentiable on D(f)

f ′(x) =
(6x− 1)(2x− 1)− 2(3x2 − x)

(2x− 1)2
=

6x2 − 6x+ 1

(2x− 1)2
, D(f ′) = D(f)

f ′′(x) =
(12x− 6)(2x− 1)2 − 4(6x2 − 6x+ 1)(2x− 1)

(2x− 1)4

=
(12x− 6)(2x− 1)− 4(6x2 − 6x+ 1)

(2x− 1)3
=

2

(2x− 1)3
, D(f ′′) = D(f)

(f) • f ′(x) = 0 ⇔ 6x2 − 6x+ 1 = 0 ⇔ x = 6±
√
36−24
12 = 1

2 ±
√
3
6

Sp f has a stationary point at x1 = 1
2 +

√
3
6 and x2 = 1

2 −
√
3
6 . Since

f ′′(x1,2) =
2(

2
(
1
2 ±

√
3
6

)
− 1
)3 =

2(
±

√
3
3

)3 = ± 2

3−3/2
= ±6

√
3 ,

It follows that x1 is a local minimum (since f ′′(x1) > 0) and x2 a local maxi-
mum (since f ′′(x2) < 0) of f .

• Since f ′′(x) ̸= 0 for all x ∈ D(f), f does not have an inflection point.

(g) • Monotonicity:

x
]
−∞, 1

2 −
√
3
6

[ ]
1
2 −

√
3
6 , 1

2

[ ]
1
2 ,

1
2 +

√
3
6

[ ]
1
2 +

√
3
6 ,∞

[
f ′ > 0 < 0 < 0 > 0
f increasing decreasing decreasing increasing

• Convexity and concavity:

x
]
−∞, 1

2

[ ]
1
2 ,∞

[
f ′′ < 0 > 0
f concave convex

(h) • Vertical asymptotes: f is not defined in x = 1
2 and

lim
x→ 1

2
±
f(x) = lim

x→ 1
2
±

x(3x− 1)

2x− 1
= ±∞

Since x(3x− 1) > 0 for x close to 1
2 . So f has a vertical asymptote at x = 1

2 .

• Horizontal asymptotes:

lim
x→±∞

f(x) = lim
x→±∞

x(3x− 1)

2x− 1
= lim

x→±∞

3x− 1

2− 1
x

= ±∞,

So f does not have any horizontal asymptotes.

• obliqued asymptotes:

a = lim
x→±∞

f(x)

x
= lim

x→±∞

3x− 1

2x− 1
=

3

2
et

b = lim
x→±∞

(
f(x)− ax

)
= lim

x→±∞

(
x(2x− 1 + x)

2x− 1
− 3

2
x

)
= lim

x→±∞

(
−x

2
+

x2

2x− 1

)
= lim

x→±∞

x

2(2x− 1)
=

1

4
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So f has an obliqued asymptotes with equation y = ax+ b = 3
2x+ 1

4 .

(i) We find the value of f at x1,2 = 1
2 ±

√
3
6 :

f(x1,2) =

(
1
2 ±

√
3
6

) (
3
(
1
2 ±

√
3
6

)
− 1
)

±3−1/2
= ±

√
3

(
1

2
±

√
3

6

)(
1

2
±

√
3

2

)

=

(
±
√
3

2
+

1

2

)(
1

2
±

√
3

2

)
=

(
1

2
±

√
3

2

)2

= 1±
√
3

2
,

Since f(x1) > f(x2) and knowing the nature of the local extrema of f in x1 and x2

that Im(f) = R \
]
1−

√
3
2 , 1 +

√
3
2

[
.

15. (a) Show that
∑n

i=1 i =
n(n+1)

2 for all n ∈ N.
(b) Let f : [0, 1] → R be defined by

f(x) =

{
x, x ∈ Q
1
2 , x /∈ Q.

Compute the upper and lower Darboux sums for the regular partitions σ2n. Is f inte-
grable?

Solution:

(a) We prove it by induction. If n = 0 or 1 the formula holds. Assume that the formula
holds for n− 1, then

n∑
i=1

i = n+

n−1∑
i=1

i = n+
n(n− 1)

2
=

2n+ n2 − n

2
=

n(n+ 1)

2
.

(b) The regular partition σ2n of the interval [0, 1] is 0, 1
2n ,

2
2n , . . . ,

2n−1
2n , 2n

2n = 1. So

Sσ2n
=

2n∑
i=1

(
inf

x∈[ i−1
2n , i

2n ]
f(x)

)(
i

2n
− i− 1

2n

)
, Sσ2n

=

2n∑
i=1

(
sup

x∈[ i−1
2n , i

2n ]

f(x)

)(
i

2n
− i− 1

2n

)
.

We observe that i
2n − i−1

2n = 1
2n for all i. Also,

inf
x∈[ i−1

2n , i
2n ]

f(x) =

{
i−1
2n if i ≤ n
1
2 if i > n

, sup
x∈[ i−1

2n , i
2n ]

f(x) =

{
1
2 if i ≤ n
i
2n if i > n
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So we compute

Sσ2n
=

(
n∑

i=1

i− 1

2n
· 1

2n

)
+

(
2n∑

i=n+1

1

2
· 1

2n

)
=

1

4n2

((
n∑

i=1

i

)
−

n∑
i=1

1

)
+

1

4n

2n∑
i=n+1

1

=
1

4n2

(
n(n+ 1)

2
− n

)
+

1

4
=

3

8
− 1

8n

Sσ2n
=

(
n∑

i=1

1

2
· 1

2n

)
+

(
2n∑

i=n+1

i

2n
· 1

2n

)
=

1

4
+

1

4n2

((
2n∑
i=1

i

)
−

(
n∑

i=1

i

))

=
1

4
+

1

4n2

(
2n(2n+ 1)

2
− n(n+ 1)

2

)
=

5

8
+

1

8n
.

We observe that the sequences (Sσ2n
) and (Sσ2n) converge to different limits, so we

expect that the function is not integrable. But finding two converging sequences
of Darboux sums that do not have the same limit is not enough to prove that
S ̸= S, because the sup and inf are taken over all the partition and partitions like
0 = x0 < · · · < xi = 1√

2
< . . . xm = 1 cannot be refined by a regular partition

because xi /∈ Q.

First method. One way to proceed is by looking at the graph of the function f ,
which looks like the union of the graphs of the two functions

f(x) =

{
x, x ∈ [0, 1

2 ]
1
2 , x ∈ [ 12 , 1]

f(x) =

{
1
2 , x ∈ [0, 1

2 ]

x, x ∈ [ 12 , 1]

and show that for every partition σ we have that Sσ is smaller that the area under
the graph of f , and that Sσ is bigger that the area under the graph of f , since these

two areas are different S and S cannot be equal.

Second method. Another way to prove that f is not integrable is by comparing ar-
bitrary partitions with the regular partitions that we computed above and compute
the Darboux integrals S and S. Recall that if σ, τ are two partitions and σ is a
refinement of τ , then Sσ ≥ Sτ and Sσ ≤ Sτ . So given an arbitrary partition τ it is
enough to make the computations for its refinements, in particular, we can choose
a partition σ that refined both τ and σ2n for some n.

Given a partition σ that refines σ2n, we can write σ as a collection of partitions

0 = x1,0, . . . , x1,m1 =
1

2n
of [0,

1

2n
]

...

i− 1

2n
= xi,0, . . . , xi,mi

= 1 of [
i− 1

2n
,
1

2n
]

...

2n− 1

2n
= x2n,0, . . . , x2n,m2n

= 1 of [
2n− 1

2n
, 1]
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then

Sσ =

 n∑
i=1

mi∑
j=1

xi,j−1(xi,j − xi,j−1)

+

 2n∑
i=n+1

mi∑
j=1

1

2
(xi,j − xi,j−1)


≤

 n∑
i=1

mi∑
j=1

i

2n
(xi,j − xi,j−1)

+

 2n∑
i=n+1

mi∑
j=1

1

2
(xi,j − xi,j−1)


=

(
n∑

i=1

i

2n
· 1

2n

)
+

(
2n∑

i=n+1

1

2
· 1

2n

)
= Sσ2n

+

n∑
i=1

1

2n
· 1

2n
= Sσ2n

+
1

4n

So

S = sup
σ

Sσ ≤ sup
n≥2

(
Sσ2n

+
1

4n

)
= sup

n≥2

(
3

8
+

1

8n

)
=

3

8
+

1

16
=

7

16

Similarly,

Sσ =

 n∑
i=1

mi∑
j=1

1

2
(xi,j − xi,j−1)

+

 2n∑
i=n+1

mi∑
j=1

xi,j(xi,j − xi,j−1)


≥

 n∑
i=1

mi∑
j=1

1

2
(xi,j − xi,j−1)

+

 2n∑
i=n+1

mi∑
j=1

i− 1

2n
(xi,j − xi,j−1)


=

(
n∑

i=1

1

2
· 1

2n

)
+

(
2n∑

i=n+1

i− 1

2n
· 1

2n

)
= Sσ2n −

n∑
i=1

1

2n
· 1

2n
= Sσ2n − 1

4n

and

S = inf
σ

Sσ ≥ inf
n≥2

(
Sσ2n

− 1

4n

)
= inf

n≥2

(
5

8
− 1

8n

)
=

5

8
− 1

16
=

9

16
> S

Since S ̸= S we conclude that f is not integrable.

16. State if the following statements are true or false. If it is true, prove it. If not, give a counter
example. Let f, g : R → R be differentiable functions on R with g′(x) ̸= 0 for all x ∈ R.

(a) If lim
x→∞

f(x) = lim
x→∞

g(x) = ∞, then lim
x→∞

f(x)
g(x) = lim

x→∞
f ′(x)
g′(x) .

(b) If lim
x→∞

f ′(x)
g′(x) does not exist, then lim

x→∞
f(x)
g(x) does not exist.

Solution:

(a) False. Take for example f(x) = x + sin(x) and g(x) = x. In this example we have

lim
x→∞

f(x)
g(x) = lim

x→∞

(
1 + sin(x)

x

)
= 1 but f ′(x)

g′(x) = 1 + cos(x) does not have a limit

(One of the hypotheses of L’Hôpital rule is not satisfied).

(b) False. Take the same functions of the previous exercise.

17. Using the definition of convex functions, show that the function f(x) = 1
x , x ∈]0,+∞[ is

convex.
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Solution: We have

f(λa+ (1− λ)b)− (λf(a) + (1− λ)f(b))

=
1

λa+ (1− λ)b
− λ

a
− 1− λ

b

=
ab− bλ(λa+ (1− λ)b)− a(1− λ)(λa+ (1− λ)b)

(λa+ (1− λ)b)ab

=
ab− λ2ab− λ(1− λ)b2 − λ(1− λ)a2 − (1− λ)2ab

(λa+ (1− λ)b)ab

=
(1− λ2 − (1− λ)2)ab− λ(1− λ)b2 − λ(1− λ)a2

(λa+ (1− λ)b)ab

≤ (1− λ2 + 2λ− (1− λ)2)ab− λ(1− λ)b2 − λ(1− λ)a2

(λa+ (1− λ)b)ab

=
((1− λ)2 − (1− λ)2)ab− λ(1− λ)b2 − λ(1− λ)a2

(λa+ (1− λ)b)ab

=
−λ(1− λ)b2 − λ(1− λ)a2

(λa+ (1− λ)b)ab
≤ 0

The last inequality holds since the denominator is always positive and the numerator is
strictly negative. So the function is convex.

18. Let the function f(x) : [−4, 4]\{2} be defined by

f(x) =
x2

x+ 2

then

(a) f attains its maximum at x = −4 and its minimum at x = 0.

(b) f attains its maximum at x = −4 and has a local minimum at x = 0.

(c) f has a local maximum at x = −4 and attains its minimum at x = 0.

(d) f does not have a maximum or a minimum on [−4, 4]\{2}.

Solution: (d) is correct. For the derivative of f we have:

f ′(x) =
2x(x+ 2)− x2

(x+ 2)2
=

x(x+ 4)

(x+ 2)2

it can be checked that if x < −4 then f ′(x) > 0, −4 < x < −2 or −2 < x < 0 then
f ′(x) < 0 and when x > 0 then f ′(x) > 0. So f has a local maximum at x = −4 and a
local minimum at x = 0. To find the global minimum and maximum of f we see that

lim
x→−2−

f(x) = −∞, lim
x→−2+

f(x) = +∞

So f does not have absolute maximum and minimum.

19. Let a, b ∈ R∪{±∞}, a < b. Let f :]a, b[→ R be a differentiable function. State if the following
statements are true or false. If it is true, prove it. If not, give a counter example.

Page 14



(a) If f is Lipschitz continuous, then f ′ is bounded.

(b) The function f(x) =
√
x defined on ]0,+∞[ is Lipschitz continuous.

(c) If f is uniformly continuous, then f ′ is bounded.

(d) If f is uniformly continuous, then it is Lipschitz continuous.

Solution:

(a) True. Let k ≥ 0 such that f is Lipschitz continuous with Lipschitz constant k. Then
for every x0 ∈]a, b[ we compute

|f ′(x0)| = lim
x→x0

|f(x)− f(x0)|
|x− x0|

≤ lim
x→x0

k|x− x0|
|x− x0|

= k.

Note that we can exchange the limit with the absolute value because we know that
the limit exists as f is differentiable.

(b) False. Assume that f is Lipschitz continuous with Lipschitz constant k for some
k ∈ R+. Then we take x = 1

n2 , y = 1
(n+1)2 and get

1

n(n+ 1)
=

1

n
− 1

n+ 1
= |

√
x−√

y| ≤ k|x− y| = k
2n+ 1

n2(n+ 1)2

So k ≥ n(n+1)
2n+1 ≥ n

2 for every integer n > 0. This contradicts the fact that k ∈ R.
Another way to see this is to observe that f is differentiable in ]0,+∞[ and show
that f ′ is not bounded, because limx→0+ f ′(x) = limx→0+

1
2
√
x
= +∞.

(c) False. We know that f(x) =
√
x is uniformly continuous on [0,+∞[ by Exercise 5

in Exercise Sheet 9, but it is not Lipschitz continuous by the argument above.

(d) False. It is a consequence of the previous point, because we know that Lipschitz
continuity is equivalent to boundedness of the derivative.

20. (a) Show that
∑n

i=1 i
2 = n(n+1)(2n+1)

6 for all n ∈ N.
(b) Let f : [0, 1] → R be defined by f(x) = 2x2 + 3x − 1 Compute the upper and lower

Darboux sums for the regular partitions σn. Is f integrable?

Solution:

(a) We prove it by induction. If n = 1 the formula holds by direct inspection. Assume
that the formula holds for n− 1 ≥ 1, then

n∑
i=1

i2 = n2+

n−1∑
i=1

i2 = n2+
n(n− 1)(2n− 1)

6
=

6n2 + n(2n2 − 3n+ 1)

6
=

n(2n2 + 3n+ 1)

6
.

(b) The regular partition σn of the interval [0, 1] is 0, 1
n ,

2
n , . . . ,

n−1
n , n

n = 1. We observe
that the function f is increasing because f ′(x) = 4x + 3 is ≥ 0 on [0, 1]. Then we
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have

Sσn
=

n∑
i=1

(
inf

x∈[ i−1
n , i

n ]
f(x)

)(
i

n
− i− 1

n

)
=

n∑
i=1

(
2

(
i− 1

n

)2

+ 3
i− 1

n
− 1

)
1

n

=
2

n3

n∑
i=1

(i− 1)2 +
3

n2

n∑
i=1

(i− 1)− 1

n

n∑
i=1

1 =

 2

n3

n−1∑
j=1

j2

+

 3

n2

n−1∑
j=1

j

− 1

=
2

n3

n(n− 1)(2n− 1)

6
+

3

n2

n(n− 1)

2
− 1 =

7

6
− 15

6n
+

3

2n2

Sσn =

n∑
i=1

(
sup

x∈[ i−1
n , i

n ]

f(x)

)(
i

n
− i− 1

n

)
=

n∑
i=1

(
2

(
i

n

)2

+ 3
i

n
− 1

)
1

n

=
2

n3

n∑
i=1

i2 +
3

n2

n∑
i=1

i− 1

n

n∑
i=1

1 =
2

n3

n(n+ 1)(2n+ 1)

6
+

3

n2

n(n+ 1)

2
− 1

=
7

6
+

15

6n
+

3

2n2

We observe that limn→+∞ Sσn
= limn→+∞ Sσn

= 7
6 . So the function f is integrable.

21. State if the following statements are true or false. If it is true, prove it. If not, give a counter
example. Let f : R → R be a function.

(a) If f(x) = x+ ex, then (f−1)′(1) = 1 + 1
e .

(b) If f is differentiable on the interval I ⊂ R, then f ′ is continuous on I.

Solution:

(a) False.

The formula for the derivative of the inverse function is (f−1)′(x) =
1

f ′(f−1(x))
.

Here we have f ′(x) = 1 + ex and f−1(1) = 0 since f(0) = 1. So

(f−1)′(1) =
1

f ′(0)
=

1

1 + e0
=

1

2
.

(b) False.
Take for example the function f , f(x) =

{
x2 cos

(
1
x

)
, x ̸= 0

0 , x = 0
. This function is

differentiable at all x ̸= 0, as it is the composition of differentiable functions. To
check the differentiability at x = 0, we claim that f ′(0) = 0:

lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

x2 cos
(
1
x

)
− 0

x− 0
= lim

x→0

x2 cos
(
1
x

)
x

= lim
x→0

x cos
( 1
x

)
= 0

So we can write the derivative of f as

f(x) =

{
2x cos

(
1
x

)
− sin

(
1
x

)
, x ̸= 0

0 x = 0

We see that f is differentiable on ] − 1, 1[ (in fact on R) but the derivative is not
continuous at x = 0.
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