Analysis T (English) |
Roberto Svaldi and Stefano Filipazzi I

Fall Semester 2021-2022

Analysis 1 - Exercise Set 11

Remember to check the correctness of your solutions whenever possible.

To solve the exercises you can use only the material you learned in the course.

1. (a) Let a,b € Z, b > 0. Show that v/z% = e? °8(#) for all real numbers z > 0.
(b) Compute the derivative of the following functions:

(i) f(z) = 2% : R — R, a € R; show that f is strictly increasing when a > 0 and
strictly decreasing when a < 0;

(ii) f(z) = a” : R — R%, a € RY; show that f is strictly increasing when a > 1 and
strictly decreasing when a < 1;

(ili) f(z) =log,(x): R — R, a € RY; show that f is strictly increasing when a > 1 and
strictly decreasing when a < 1;

Solution:

(a) v/z¢ is the unique positive number such that (/%) = 2. The number e? °8(*) is
positive, because e¥ > 0 for all y € R. So it suffices to check that

(6% log(z))b _ ealog(z) _ (elog(x))a —

(b) (i) (z2) = (e*1°8®)) = 2ealog(@) = qz2~!. From this we see that, since z > 0,
(%) > 0if a > 0 and hence z* is strictly increasing. Likewise, (%)’ < 0 when
a < 0 and hence z is strictly decreasing.
(i) (a®) = (e*1°8(@)) = log(a)e*'°8(®) = log(a)a®. Since log(a) > 0 for a > 1 and
log(a) < 0 for 0 < a < 1, we see that (a*) > 0if a > 1, and (¢*)' < 0ifa < 1.
Therefore, a® is strictly increasing if @ > 1 and strictly decreasing if a < 1.

!
(iii) (log,(x))" = (izggzg) = xlolg(a). The monotonicity results follows from that

log,, () is the inverse of a® and that the inverse of a strictly increasing/decreasing
function is strictly increasing/decreasing.

2. State if the following are true or false.

(a) If f: R — R is differentiable and has two roots, that is, there exist  # y € R, f(z) =
0 = f(y), then f” has at least one root.

(b) The function f(z) = % has a critical value in ]v/2, /2 + 7/2].

Solution:




(a) True. If the two roots, a and b, are distinct, up to swapping them we may assume
a < b. Then we apply Rolle’s Theorem to the interval [a,b] to prove that f’ has a
zero between them.

sin(z?—2) |

(b) True. We compute the derivative of P TE=wRvo s

) 2z cos(x? — 2)(e32F! + /2x) — sin(2? — 2)(3e3*+! 4 V/22-1/2)

x) = .
(371 4 /27)2

We observe that the domain of f is [0, +o00[; the above computation shows that f

is differentiable on |0, +o0c[. Furthermore, f is a continuous funciton on its domain

10, +00[. We compute

2+/2 3e3V/2+m/2+1 1 —
f’(\@)=L>0, 7( 2+7r/2):_(€ +V/E+n |
VI V2V VT2 1 2\ /2+ /2

So by the intermediate value theorem applied to the continuous function f/, there

is m9 €]v/2, /2 + 7/2[ such that f'(zo) = 0.

3. Calculate the following limits:

(a) lim (1 + sin(gc))l/w

z—0

(Hint: Write (1+ sin(m))l/x = eelog(lﬁm(m))) and first calculate the limit of the expo-
nent.)

(b) lim,_, /5 xlx__i ”\/35\/5 Remember that 2% = e®1°8(®)

Solution:

For calculating these limits we apply the L’Hopital rule, but we must check the hypothesis
in each case:

(a) We have (1+ sin(x))l/z — e 1°g(1+sin(x)). We are first going to calculate the limit
of the exponent. Take f(z) = log(1+sin(z)) and g(z) = z. Then limo flx) =
z—
1in%)g(z) =0 and ¢'(x)=1+#0. So
z—

. cos(x)
1 1 S "Hoépita sin(x
Jing 081+ SI(@)) LHopital |, Toin(e) _
z—0 T z—0 1

Finally, by the continuity of the exponential function we have

lim (1 +sin(z))/* =e! =e.
z—0

We may apply L’Hopital’s rule since ()’ # 0 V intervals I containing 0.

(b) Take f(z) = z* — V3V3 and g(z) = = — /3. Note that we can rewrite f(z) =
evlogr_oV31og V3 We have that lim, , 5 f=1lim,, sg=0andthat g (z) =1#0.
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So the L’Hopital rule applies. We have

T 3\/§ etlogz _ e\/glog\/g
lim —— = lim
x—>\/§ xr — \/g x—n/g xr — \/?;
L'Hopital .. (14 logz)e®loe®
= lim

z—/3 1

1
=(1+ ilogB)\/ 3v3

We may apply L’'Hopital’s rule since (z —+/3)’ # 0V intervals I containing 0.

4. Find the Taylor expansion of order 5 at x = 0 of the following functions.

(a) f(z) = sin(z)

(b) f(z) =log(l+x)
(c) f(z) = tan(z)

(d) f(z) = rccos( )
(e) f(xz) = sinh(x)
(f) f(x) =log(cos(x))
Solution:

The Taylor’s expansion of order 5 around the point a of a function f is given by the

f’(a) f”’(a)

1) = 1@+ Ty L T8 g
(4) (5)
+ f 44'(a) (x —a)* + /) (x —a)’ +e5(x)
! 5!
f(G)(U) 6 :
where e5(z) = Gl (x—a)® for a certain u between a and x, we can say that u €]a, |

if 2 > a and that u € |z, a] if z < a.

(a) For sinx we notice that all the even derivatives are zero at = 0 and odd derivatives

are sin* 1) (z) = cos(z) and that cos(0) = 1 and sin®*++3)(z) = — cos(x) and that
—cos(0) = —1. If we plug in all the derivatives in the Taylor formula we get
3 5
sin(x) =z — % + %O +e5(x)

(b) For log(1 + x) we see that the n-th derivative is given by

So we can now use the Taylor expansion to write

R A
log(1 —p— T T 4 gh
og(l4+z)=x 5 + 3 1 + g + z’e(x)
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(c) By differentiating f(x) = tan(z) 5 times we see that

which yields f(z) =z + 2%+ Za° + -+

(d) By differentiating f(z) = arccos(x) 5 times we see that

o) =73

f1(0)=-1

f(0) =0

f//l(o) _1

f(4) =0

e =_9
1,..3 3 .5

which yields f(z) = § —x — 27 — ;52° -~

(e) By differentiating f(z) = sinh(z) (note that f(**) = sinh(z) and fZ*+D(z) =
cosh(z)) 5 times we see that

which yields f(z) =z + §a® 4+ 352° + -+

(f) Note that f/(xz) = —tan(z). Then we can use (c) to see that

which yields f(z) = —32? — Sat- -

5. Use Taylor expansion to find the following limits.
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z2
(a) lim, o ©—c — 0@

5
. e” + sin(z) — cos(z) — 2z
1

(b) Tim, o x —log(1+ x)

xsin(sin(z)) — sin(z)?

(C) hmz_)o :176
J1—z—1

(d) hmy_>0 m_ 1

Solution: We need to choose the order of the Taylor expansion such that the indetermi-
nacies in the denominator are eliminated. Since we are only interested in the limit, it is
enough to keep higher terms as (x — a)"e(z), where }gr(ll e(z) = 0. In particular, if we
(n+1)(u)
!

consider a Taylor expansion of order n and have an error e, (z) = £ (x — a)" T

= %(w — a). Then, as

n.:
we want to write it as (z — a)™ - e(z), where we set e(x)

(nt1)
fT,(u) is bounded in a neighborhood of a (we are using that f*1 is continuous and

uis a value, depending on x and a, that is in between a and z) and x —a — 0 as z — a,
we get that e(z) — 0 as x — a.

(a) Since

3 x°

: _ T T s
sin(z) =« 5 +120+m e(x),

we have

i L z? in(z) ) = I 1+)_1
lim =< \2- % sin(x) = lim { —355 e(z =130

because £(x) — 0 when = — 0.

(b) We have
T a? a? 2 2, .2
e +sm(x)—cos(:v)—2x:1+x+?+x—1+772x+x e(x) = a” + ze(x)
and

1’2 2 12 2~
Q:flog(1+x):xfx+7+x 5(:17):7+9: é(x),

where e(z) (resp. &(z)) goes to 0 as x — 0, as it has the form C(u(z))x?, where
C(x) is the derivative of order 3 of e* + sin(x) — cos(z) — 2z (resp. x — log(1 + z)).

Thus, we have
lim e” + sin(x) — cos(z) — 2z ~ lim xj + 22¢(x) — lim } +e(x) _o
z=0 z —log(1 + ) 2=0 T 4 g2¢(x) =0 3 +e(x)

(¢c) We need to choose the order of the Taylor expansion such that the indeterminacies
in the denominator are eliminated. Since we are only interested in the limit, it is
enough to keep higher terms as (z — a)"e(z), where lim e(z) =0.

Tr—a

For the 6-th order Taylor expansion of the numerator, we need to first find the
5-th order Taylor expansion of sin(sin(z)) and then the 6-th order of sin(z)?.

x® 2®
Since sin(z) = x — TrEt x%¢(z), we have
an()3 sin(a)d
sin(sin(x)) = sin(x) — Sln?E'x) + smé'x) + sin(z)°e (sin(z) ) . (1)
! ! N S
=z%e(x)
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In the computation, we replace sin(z)%¢(sin(z)) with 2%¢(z) . We can do this
because sin(0) = 0 and ili% e(x) = 0, we have ili%s(sm(x)) = 0 and so £(sin(z) )
behaves as e(x). Then, w is bounded in the neighborhood of 0 (as its limit as
x — 0is 1) and indeed sin(z)%¢(z) = Sinz(i/f)r)xf’s(x) behaves like z°¢(z).

For the powers of sin(z) we have

So we get
sin(sin(x)) = = %3 + % % (;v3 - xj) + % + 2¢(x)
Zx—%s—i—f—;—l—m%(x)
And finally
tin xsin(sin(a;)g —sin(z)® _ 1 % <I2 B %4 N %6) PN %4 _ % " 3565(@)

Remark: We can directly substitute the expansion of sin(z) inside equation (1).
This way we get

sin(sin(z)) = (a: LA x56(x)> 1 (m S i x5e(ar)>3

1
120
3 b 1/ 4 3ab 5 s
(6 120>6<x6>+120z+$6(z)
3 5
:x—%—i—%—i—x%(m)

(d) We have

so the limit is %
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6. For a complex number of the form e, z € R, we defined

ezm + e—ll’ eZI _ e—’L(E

cosh(ix) := 5 , sinh(iz) :=

(a) Compute the complex numbers cosh(ix), sinh(iz);

(b) For each of the functions cosh(x),sinh(x), tanh(z), coth(z) compute the derivative and
the domain of the derivative.
Which of these functions are invertible on the domain R? which on R ? Recall that

e fe=T et — =T sinh(z) 1
cosh(z) 5 S (z) 5 o an (z) cosh(z)’ coth(z) tanh(z)

(¢) Compute the derivatives of the inverses of the functions in (b) and their domains.

Solution:

(a)

cosh(iz) = % = i(cos(a:) + isin(z) + cos(—x) + isin(—x)) = cos(x)
sinh(iz) = e _26_2:5 = %(cos(m) + isin(z) — (cos(—x) + isin(—=x))) = isin(x)

(b) D(cosh(z)) = D(sinh(z)) = R. Since cosh(z) > 0 for all z € R, then D(tanh(x)) =
R. Since sinh(x) = 0 only if = 0, we have D(coth(z)) =R\ {0}.

Using the fact that (e®*) = ae®® for all a € R we see immediately that

x —x x —z
cosh(z)" = % = sinh(z), sinh(z) = % = cosh(z)

and D(cosh(z)’) = D(sinh(z)") = R. Since sinh(z)" > 0 for all x € R, then the
function sinh(z) is strictly increasing and hence invertible on the domain R. We
compute lim,_, 4 sinh(z) = 400 and lim,_,_ sinh(z) = —oo, so R(sinh(z)) =
R because sinh(z) is a continuous function. So R(sinh(z)) = R. We compute
lim, 4o, cosh(z) = 400, so the function cosh(z) is not invertible on the domain R,
but cosh(z)’ > 0 for all > 0, so cosh(x) is strictly increasing and hence invertible on
the domain R* . Also, we observe that cosh(z) has a minimum in = 0, because it
is stricly decreasing on ] — oo, 0] and strictly increasing on ]0, +00[. So R(cosh(z)) =
[cosh(0), +oo[= [1,+o0].

Using the rule of derivative of a quotient, we see that

tanh(z)’ = sinh(x)’ cosh(x) — sinh(x) cosh(z)" cosh(z)? — sinh(z)? B 1

- cosh(z)? B cosh(z)? "~ cosh(z)?
coth(z) = cosh(x)’sinh(x) — cosh(x) sinh(z)" sinh(z)? — cosh(z)? . 1

- sinh(z)? B sinh(x)? " sinh(z)?

Then D(tanh(z)") = R, D(coth(z)’) = R\ {0}. Since tanh(z)’ > 0 for all z € R
the function tanh(z) is strictly increasing, and hence invertible. Since coth(z)’ < 0
for all  # 0, the functions coth(z)}j— oo o, cOth(z)]j0,4-00[ are both strictly decreasing
and hence invertible on their domains. To compute the range of monotone functions
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defined on intervals, it suffices to compute the limits at the extremities of the domain.
We have

eT — 7 et — e
lim tanh(z) = lim —— = -1, lim tanh(z)= lim — =1
T——00 z——o0 eT 4 e~ 7T z— 400 z—+4o0 T 4 e~ %
so R(tanh(z)) = [-1,1]
x —T x —T
lim coth(z) = lim ere —1, lim coth(z)= lim ere 1,
T——00 z——o00 eT — e~ 7T r—+00 rz—+o0 T — e~ 7T
T —x 1 —2x
lim coth(z) = lim ete im . —00,
=0~ z—0- €T —eT g0~ 1—e @
T —x 1 —2z
lim coth(z) = lim cre lim e +o0
z—0+ z—0+ T — e g0t 1 — e
so R(coth(z)) =] — oo, —1[U]1, +o0].

Note that we know the ranges of the hyperbolic functions above, which will be the
domains for the inverses. Therefore, we automatically get the domains of the in-
verses from the ranges in (b).

Consider y = cosh(z). Then, if > 0, we have cosh™'(y) = z. By the rule
for the derivative of the inverse function, we have (cosh™(y))’ = WM
Thus, we have

1
(cosh(cosh ™ (y)))’

1

sinh(cosh ™ (y))

1

\/sinhz(cosh71 (y))
1

\/cosh2 (cosh™(y)) —1
1
SVt

where in the second line we used that cosh’ = sinh, in the third line we used that
coshfl(y) = 2 > 0 by assumption and that sinh(z) > 0 when = > 0, which guar-

(cosh™ (y))" =

antees that sinh(z) = y/sinh®(z) when sinh(z) > 0. Lastly, in the fourth line we

used the hyperbolic trigonometric identity cosh?(t) — sinh?(t) = 1. Recall that the
domain of cosh™*(y) is [1,00); thus, the domain of its derivative is (1,00).

We apply a similar argument. Notice that y = sinh(x) is invertible on R, so there
is 1o restriction to write 2 = sinh ™' (y). Then, we have

sinh ™! I = !
( W) = i)y
1

cosh(sinh™*(y))
1

\/cosh2 (sinh™*(y))
1

/. 1 2 1 —1 \ 4
V Smin (Smin y))+1
1

Pa_ge §y2+1’7




where we argued as in the previous step and used that cosh(t) = /cosh?(t) for all
t, as cosh(t) > 1 for all t. Thus, the derivative is defined on all R.

Applying a similar argument to tanh we write y = tanh(z), so x = tanh™'(y),
where z € R and y €] — 1, 1[. Then, we have

1
(tanh(tanh ™ (y)))’
= cosh?(tanh ™ (y))

1

1 — tanh?(tanh™*(y))
1
1—y?

(tanh™(y))" =

where we used the identity sech?(t) = 1 — tanh®(t), which can be rearranged as

coshz(t) = ﬁh%) So, the domain of the derivative coincides with the domain

of tanh ™" (y), which is | — 1, 1[.

Applying a similar argument to y = coth(x), we write

1
(coth(coth™ (y)))’
= —sinh? (COth_1 (y))

(coth™ (y)) =

1

1 — coth?(coth™1(y))

_ 1

=T

1

= a1
where we used the identity csch?(t) = coth?(t) — 1, which can be rearranged as
sinh?(t) = m So, the domain of the derivative coincides with the domain of

coth™ (), which is ] — oo, —1[U]1, 4-00].

7. For the following functions, find the stationary points and discuss whether they are points at
which the function attains a local maximum or minimum.

(a) f(z) = xlog*(z) in J0, +-oc|

(b) f(z) = 2sin(z) + cos(2z) in [~ 5, £]

Solution:

(a) The derivative is
7'(z) = log() (log(x) +2)

and it is zero at x = 1 and & = e~2. The derivative is positive in the interval |0, e =2,
negative in Je=2,1[ and positive in |1, +oo[, so €72 is a local maximum and 1 is a
local minimum. Since f(1) =0 and f(z) > 0 for all  in the domain, it follows that
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the minimum at 1 is also global. On the other hand, the local maximum is not a
global maximum, as lim,_, . f(z) = +o0.

(b) The derivative is
f'(x) = 2cos(x) — 2sin(2z) = 2 cos(z)(1 — 2sin(2z)).

The derivative vanishes only if cos(z) = 0 (i.e., x = § + k) or sm 25(} =1
r = {5 tkrorz= %r + k), and no one of these values is in 0, 15T
f is strictly increasing on its domain and has no stationary pointb on its domaln
Therefore, as the domain is a closed interval, we have a minimum at —-% and a

10
maximum at 1 s

8. Calculate the following limits:

(a)

lim z (tanh(z) — 1)

T—+00

lim <; where n € N. First find the limit using e” = ) %’: and then using 'Hopital’s
z—+o00 ¥ o
rule.

lim 2" log(x)

z—0t

lim %
r—00 log(m)

Solution:

(a) Here we should apply the L’Hoépital rule several times. For the first time, we have
f(z) = tanh(z) — 1 and g(z) = L. Since grf flz) = Er}rl g(x) =0 and ¢'(z) =

—1 # 0, the hypothesis is satisfied and we can apply the L’Hopital rule (the
hypothesis for the second and third iterations of L’Hopital rule will be verified
below) :

1

tanh(z) — 1 Ltiopi R 2
lim z (tanh(z)—1) = lim % FRgRital iy COSh(lz)z =— lim m
T 400 z——+00 = zotoo  —— z—+oo cosh(
L’Hépital . 2T L’Hopital . 2
= - lm —— =" — lim ——— =0.
z—+o00 sinh(2x) z—+oo 2 cosh(2x)

To apply the L’Hopital rule a second time we have f(z) = 22 and g(z) =

cosh(z)? we have mgg_loof(x) = rgﬂog(x) =400 and ¢'(z) = 2sinh(z) cosh(z) =

sinh(2z) # 0 for x # 0 (which is the case when  — +00).

Finally for the third time with f(z) = 2z and g(z) = sinh(2z) and so xgr}rnoo f(z) =
lim g(x) = +oo and that g'(z) = 2cosh(2z) # 0. And so we can apply the

T—+00

L’Hopital rule for the third time.

(b) Here we need to apply the L'Hopital rule n times. We notice that every time we

apply the L’Hopital rule the numerator remains e* and the denominator will be of
the form ma* for some m € N and 0 > k < n. So take f(x) = ¢ and g(x) = ma*.
We have that lim,_, oo f = lim, 400 ¢ = +00 and that ¢'(z) # 0. So we can apply
L’Hopital rule n times. We have
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x x x

. . e L’Hépital L’Hépital .. e
lim — = lim —— = ... = lim — = +o0
z—+too g w400 nxn—l z—+o0o

Now using the Taylor series expansion we see that ;I =§(z) + k§ l";" =0(z) +
=n
§ (kiikn); > 0(z)+ 4 + ﬁaz — +o00 when  — 400 where §(z) is a function s.t.
g?:g) — 0 as z — +oo.
(c)
lim 2" log(x) = lim logl(x) L'Hopital . % -0

n
z—0t z—0t z—0t — on¥T

T

(d) lim

n . 1 .
Jm 7102(1-) = lim —q—ry log(h) — T by using (c).

h—0t

9. Calculate the derivative f’ of the function f(z) = logs(cosh(z)) and give the domain of f and

f
Solution:
We observe that | ( h( ))
og ( cosh(z
M= 0@
;.\ sinh(z) _ tanh(z) B N

So  f'(z) = log(3) cosh(z)  Tog(3) and D(f) = D(f") =R, as cosh(z) > 1 for
all z.

10. State if the following are true or false.

a) The function f : [0, +oo[— [1, +00[ defined by f(z) = x> — x + €® is invertible.
(a)

(b) Let a,b € R, a < b. Given a continuous function f :]Ja,b[— R which is not monotone,
there exists a point zo € (a,b) at which f admits a local minimum.

Solution:

(a) True. We compute f'(z) = 322 —1+e*. We observe that f’(z) > 0 for z > 0, so the
function f is injective because it is strictly increasing. It has a minimum at x = 0,
f£(0) = 1. The supremum of the range is lim,_, o f(x) = +00. So f is invertible.

(b) False. Take for example f(z) = —22,a = —1,b=1.

11. Calculate the following limit lim, o

log(xz — 1)
r—2
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Solution: Let f(z) = log(z—1) and g(x) = £—2. Then we have lirn2 f(z) =0, lim2 g(x) =
r—r r—
0 and ¢'(z) = 1 # 0. So the hypothesis of the L’Hopital rule is satisfied, so we have,

1

log(x — 1) vHepital |, 7—1
m—" "= lim
z—=2  xr— 2 z—2 1

=1.

12. Let the function f :] — /2, 7/2[— R be defined by f(x) = log(1+sin(z)). What is the Taylor
expansion of order 3 of f at x = 0.

(a) . — % +-
2 3
(b) v+ %5 — % +-
1)2 CL‘S
() z—5+% +-
$2 (1}'3
(d) T+F + 5+
Solution: (c) is correct. We use the following Taylor expansions
2 3
log(l+z) =2 — % + % + 23e(z)
3
sin(z) = x — 5 + 23e(z)
So
3 1 2 3
log(1 + sin(x)) = (z — %) - 5(96)2 + = (z)3 +23e(z) = o — % + % + 2%¢(x)

Revision Exercises

13. Consider the bijective function f :]1, co[—] — 0o, —2[ defined as f(x) = log(z) — 2z. Then the
derivative of the inverse function f~1(y) at y = —2 is

(@) (F7)(-2)=-1
(b) (f71)(-2)=1
(c) (f71)(-2) = -3
(@) (F1)(-2) =%
Solution: (a) is correct. Using the formula for the derivative of the inverse function we
have )
') =
U= )
First we compute f'(x)
1
)=~ -2
Then we should find z such that f(z) = —2, clearly x = 1. By substitution we get
(f7)(=2)=-1.
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14. For which of the following item you can prove, using the intermediate value theorem, that
there exists a ¢ in [ such that f(c) = k.

(a) f(z) ==, ,
() fx)=2*+2x+1, k=2, I=][-23
(c) f(x) =55, k=0, I=1[0,1]
(d) flz)= 2%, k=8, I=101]

Solution: (d) is correct. The function must be continuous on the interval [a, b] and satisfy

fla) <k < f(b) of f(a) >k > f(b).

15. Let f: R — R be defined by
(1 —2?
f(ac) = sin <1—i—372>

Solution: (b) is correct.

16. Let the function f: R\{1/2} — R be defined by

203 + 22+ 2z +1
f(x) =
20 —1

then

(a) f has at least one root in [—1,0]
(b) f has at least one root in [0, 1]
(c) f has at least two roots in [—1,1]
(d) f has no roots

Solution: (a) is correct. To use the intermediate value theorem, we need f to be contin-
uous on a given interval, since the function is not defined at « = 1/2 so the intermediate
value theorem cannot be applied on [0, 1] and [—1,1]. On the interval [—1,0], f is contin-
uous and we see that f(—1) > 0, f(0) < 0. The intermediate value theorem suggests that

f has a solution in [—1,0].

17. Let the function f :] —1,1[\{0} — R be defined by f(z) = %. Let g ;] — 1,1[— R be
an extension of f that is continuous at 0. Then
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(a) g exist and g(0) = —

(b) g exist and ¢(0) =

(¢) g exist and ¢g(0) =

(d) f does not have a continuous extension at 0.

(Hint: Note that log(1) = 0 so log(1 + z) = log(1 + x) — log(1). Then use the definition of

derivative.)

Solution: (a) is correct. We need to find the limit f as & — 0. We use polynomial
expansion to get

rlog(l+x) i xlog(l4+x) cos(z)+
@0 cos(r) —1  2—0 cos(z) —1 cos(x)+1
log(1 + z) x?

- ig% x — sin®(z) +(cos(@) +1)
log(1 —1
= (h og(1 + ) — log(1 )) lim ————— - (cos(x) + 1)
z—0 20 — sin? (x

(hm log(1 + z) ) (-1)-2=

18. Check if the following series are convergent
“+oo n
(@) 200 Gy

Solution:
(a) We have 0 < (nzl)! < #, so the series converges by the comparison test.
(b) We have nZg(.:ini)z = #ni’;fl . The sequence nigili converges to 3, so for n big
enough we have " !
3n+1 4

S n2(n+1)2 " pd

(We could have replaced 4 with any real number strictly bigger than 3). The series
converge by the comparison criterion.

19. For what values of ¢ > 0 the following series converges? If convergent, what is the limit?

> ()

n=0

2
Solution: The series is a geometric series. Since (t_%l) is always strictly smaller than

1, the series is always convergent and the limit is
1

t 2
1= ()
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