First part: multiple choice questions

For each question, mark the box corresponding to the correct answer. Each question has exactly one correct answer.

Question 1: Consider the series with parameter $x \in]0,1[\cup]1,+\infty[$ defined by

$$\sum_{n=1}^{\infty} \frac{1}{(\log(x))^n}.$$

Then, the series converges if and only if

$$x \in \left]0, \frac{1}{e}\right[\cup e], +\infty[$$

 $x \in \frac{1}{e}, 1 \cup 1, e$

 $[] x \in]e, +\infty[$

Question 2: Let $(a_n)_{n\geq 1}$ be the sequence $a_n:=\frac{(5n+1)^n}{n^n5^n}$. Then,

 $\lim_{n\to\infty} a_n = 0$

Question 3: Let $a_0 \in \mathbb{R}$ and $(a_n)_{n \geq 0}$ a sequence of real numbers satisfying the following recurrence relation for $n \geq 1$

$$a_n = \frac{a_{n-1}}{2} + \frac{1}{2}.$$

Then:

if $a_0 = 0$ the sequence is convergent

if $a_0 < 1$ the sequence is decreasing

if $a_0 > 1$ the sequence is increasing

Question 4: Let $(a_n)_{n\geq 1}$ be the sequence defined by $a_n=(-1)^n+\frac{1}{n}$, and let $A=\{a_1,a_2,a_3,\dots\}$. Then:

inf A = -1 and $\sup A = 1 + \frac{1}{2}$

 \bigcap inf A = 0 and sup A = 1

 \bigcap inf A = -1 and sup A = 1

 \prod inf A = 0 and sup $A = 1 + \frac{1}{2}$

Question 5: Let $(u_n)_{n\geq 0}$ be the sequence defined by $u_0=1$ and, for $n\geq 1$, $u_n=-\frac{2}{3}u_{n-1}+2$. Then:

 $\lim u_n = \frac{6}{5}$

 $\lim_{n\to\infty}u_n=-\infty$

Question 6: Let $(a_n)_{n\geq 1}$ be the sequence defined by

$$a_n = (-1)^{n+1} + \left(-\frac{1}{2}\right)^n + \frac{3}{n}.$$

Then:

 $\lim \inf_{n \to \infty} a_n = -1 \text{ and } \lim \sup_{n \to \infty} a_n = \frac{3}{2}$

 $\lim_{n \to \infty} \inf a_n = -1 \text{ and } \limsup a_n = 1$

CORRECTED

Question 7: One of the solutions of the equation $z^5 = (1 + \sqrt{3}i)^2$ is

 $z = \sqrt[5]{4} \left(\cos \left(\frac{2\pi}{15} \right) + i \sin \left(\frac{2\pi}{15} \right) \right)$ $z = \sqrt[5]{2} \left(\cos \left(\frac{2\pi}{15} \right) + i \sin \left(\frac{2\pi}{15} \right) \right)$

Question 8: Let, for $k \in \mathbb{N}^*$, $a_k = (-1)^k \frac{k+2}{k^3}$ and let $s_n = \sum_{k=1}^n a_k$. Then:

 \square the series $\sum_{k=1}^{+\infty} a_k$ converges, but not absolutely.

the series $\sum_{k=1}^{+\infty} a_k$ converges absolutely.

CORRECTED

Second	part:	true	/false	questions

For each question, mark the box (without erasing) TRUE if the statement is always true and the box FALSE if it is not always true (i.e., it is sometimes false).

Question 9: Let A and B be two nonempty bounded subsets of \mathbb{R} . If inf $A > \sup B$, then $A \cap B$ is empty.

TRUE FALSE

Question 10: Let $(a_n)_{n\geq 1}$ a sequence of strictly negative numbers. Then the series $\sum_{n=1}^{\infty} a_n$ converges absolutely if and only if it converges.

TRUE FALSE

Question 11: Let $z_1, z_2 \in \mathbb{C}$ be such that $\operatorname{Re}(z_1 \cdot z_2) = 0$. Then $\operatorname{Re}(z_1) \cdot \operatorname{Re}(z_2) = 0$.

TRUE FALSE

Question 12: Let $(a_n)_{n\geq 0}$ be a sequence of non zero real numbers such that $\lim_{n\to\infty} a_n = 2$. Then $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1$.

TRUE FALSE

Question 13: Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that $\lim_{x \to +\infty} f(x) = +\infty$ and let $(a_n)_{n \ge 0}$ be the sequence defined by $a_0 = 1$ and, for $n \ge 1$, $a_n = f(a_{n-1})$. Then $\lim_{n \to \infty} a_n = +\infty$.

TRUE FALSE