

Analysis 1 - Exercise Set 9

Remember to check the correctness of your solutions whenever possible.

To solve the exercises you can use only the material you learned in the course.

- 1. Find the local and global maximum/minimum of the function $f(x) = |x^2 x| + |x|$, by sketching the graph of the function.
- 2. Compute the following limits if they exist.
 - (a) $\lim_{x \to 1} \frac{x^2 x}{x^2 2x + 1}$
 - (b) $\lim_{x \to +\infty} \left(\sqrt[3]{x+1} \sqrt[3]{x} \right)$
 - (c) $\lim_{x \to 0} \frac{(-1)^{[x]}}{\sin(x)^3} + \frac{1}{\sin(x)^2}$
- 3. Consider the function

$$f(x) = \frac{x(x-1)\tan(x-1)}{x^3 - 3x + 2},$$

whose domain is $\mathbb{R} \setminus \{-2, 1\}$.

- (a) Study its continuity at $x_0 = 0$.
- (b) Find, if it exists, a continuous extension of the function f in $x_0 = 1$, or otherwise show that f cannot have a continuous extension at $x_0 = 1$.
- 4. (a) Prove or disprove that a function is continuous if and only if it is uniformly continuous.
 - (b) Prove or disprove that $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sin(x)$ is a uniformly continuous function.
 - (c) Show that the function $f:]0, b[\to \mathbb{R}$ defined by $f(x) = x^2$ is continuous and also uniformly continuous for $b < +\infty$. Show that f is not uniformly continuous when $b = +\infty$.
- 5. Let I be an interval, $f: I \to \mathbb{R}$ be a continuous function and f(I) the image of I by f. Say if the following statement are true or false.
 - (a) f(I) is an interval (where here we also admit the degenerate case $f(I) = [m, m] = \{m\}$).
 - (b) If I is a bounded and closed interval, then f(I) is a bounded and closed interval (where here we also admit the degenerate case $f(I) = [m, m] = \{m\}$).
 - (c) If I is open, then f(I) is an open interval.
 - (d) If I = [a, b[with $a, b \in \mathbb{R}$, a < b, then f attains its maximum and minimum in I. That is, there exists $m, M \in R(f)$ such that R(f) = [m, M].
- 6. Find, if it exists, continuous extension of the function $f:]0,1] \to \mathbb{R}$ given by $f(x) = \frac{\tan(\sqrt{1+x}-1)}{x^{3/2}}$ at $x_0 = 0$, or otherwise show that f cannot have a continuous extension at x_0 . (Note: you have to care just about the limit from the right, that is: $x \to 0^+$)
- 7. Use the intermediate value theorem to show that the following equations have at least one solution in \mathbb{R} :

- (a) $e^{x-1} = x + 1$
- (b) $x^2 \frac{1}{x} = 1$
- 8. State if the following functions are continuous and differentiable at x = 0.
 - (a) $|\sin(x)|$
 - (b) $|x^3|$
- 9. Check if the following functions are uniformly continuous
 - (a) \sqrt{x} with domain $[0, +\infty)$
 - (b) x^3 with domain $[0, \pi]$
 - (c) x^3 with domain \mathbb{R}
- 10. Let f and g be two continuous functions in [a,b], such that f(a) > g(a) and f(b) < g(b). Show that there is $c \in]a,b[$ such that f(c) = g(c). (Hint: use the function h = f g and the intermediate value theorem.)
- 11. Find the inverse of the following functions if they exist. Give the domain of both functions.
 - (a) $f(x) = \sqrt{(2x+4)^3 7}$
 - (b) $f(x) = \frac{2x+3}{3x+5}$
 - (c) $f(x) = \frac{\cos^2 x \sin^2 x}{2\sin x \cos x}$
- 12. Let I be an interval, $f: I \to \mathbb{R}$ be a continuous function and f(I) the image of I by f. Say if the following statement are true or false.
 - (a) If I is bounded, then f(I) is bounded.
 - (b) If $I = [a, \infty[$ with $a \in \mathbb{R}$, then f attains its maximum and minimum in I.
 - (c) If f is strictly increasing and I is open, then f(I) is open.
- 13. Find, if it exists, continuous extension of the function $f:]2, \infty[\to \mathbb{R}$ give by $f(x) = \frac{\sqrt{x} \sqrt{2} + \sqrt{x-2}}{\sqrt{x^2 4}}$ at $x_0 = 2$, or otherwise show that f cannot have a continuous extension at x_0 .
- 14. **The Bisection Algorithm:** Using the intermediate value theorem and successive bisection of the interval [0,1], find an interval of the length $L \leq \frac{1}{8}$ that contains a solution of the equation

$$x^3 + x - 1 = 0$$
.

15. Let the function $f:[0,\infty)\to\mathbb{R}$ be defined as

$$f(x) = \begin{cases} \frac{3x^2 - 10x + 3}{x^2 - 2x - 3}, & x > 3\\ \alpha, & x = 3\\ \beta x - 4, & x < 3 \end{cases}$$

Find $\alpha, \beta \in \mathbb{R}$ such that the function is continuous at x = 3

- 16. Show that if f(x) is continuous on [-1,1] and f(-1)=f(1), then there exists $\delta \in [0,1]$ such that $f(\delta)=f(\delta-1)$.
- 17. Find, if it exists, continuous extension of the function $f: [-\pi/4, 0[\cup]0, \pi/4] \to \mathbb{R}$ given by $f(x) = \frac{1-\cos x}{\tan^2 x}$ at $x_0 = 0$, or otherwise show that f cannot have a continuous extension at x_0 .

18. Let us define the functions

$$\cosh(x) = \frac{e^x + e^{-x}}{2}, \quad \sinh(x) = \frac{e^x - e^{-x}}{2} \quad \tanh(x) = \frac{\sinh(x)}{\cosh(x)}.$$

- (a) Find domain and range for each of the 3 functions.
- (b) Show that

$$\cosh(x)^2 - \sinh(x)^2 = 1.$$

- (c) Find a suitable domain, for each of the 3 functions, over which the function is invertible.
- (d) Compute

$$\lim_{x \to +\infty} \cosh(x), \quad \lim_{x \to -\infty} \cosh(x),$$
$$\lim_{x \to +\infty} \sinh(x), \quad \lim_{x \to -\infty} \sinh(x),$$
$$\lim_{x \to +\infty} \tanh(x), \quad \lim_{x \to -\infty} \tanh(x).$$