

## Analysis 1 - Exercise Set 6

Remember to check the correctness of your solutions whenever possible.

To solve the exercises you can use only the material you learned in the course.

- 1. Compute, if they exists, the limits of the following sequences
  - (a)  $\sqrt[n]{\frac{3}{n}}$
  - (b)  $(-1)^n \left(\frac{n^2+1}{n-1}\right)$

(c) 
$$\frac{1}{n^2} \left( \sqrt{1 + n + \pi n^2 + \frac{\sin(n)}{n}} - 1 \right)$$

(d) 
$$\sqrt[n]{n \log(n)}$$
 (Hint:  $1 < \log(n) < n$  for  $n > 3$ )

(e) 
$$n^2 \left( \sqrt{1 + \frac{1}{n} + \pi \frac{1}{n^2} + \frac{\sin(n)}{n^5}} - 1 \right)$$

(f) 
$$\left(\frac{n-1}{n}\right)^{n^2}$$

$$(g) \quad \sqrt[n]{\frac{2n}{3n^2 - 1}}$$

(h) 
$$\frac{4n^2 - 2\pi}{-n^3 + \sqrt{7}n}$$

(i) 
$$\frac{(n+1)!}{n!-(n+1)!}$$

(i) 
$$\frac{(n+1)!}{n!-(n+1)!}$$
  
(j)  $\frac{\sqrt{\frac{\cos(n)}{n^2}+1}-1}{\sqrt{e-\frac{1}{n}}-\sqrt{e}}$ 

2. Let  $a, b \in \mathbb{R}_+$  and  $(x_n)$  be a sequence defined by the recurrence relation

$$x_{n+1} = ax_n^2$$
  $x_0 = b$ .

(a) Show by induction that every element in the sequence  $(x_n)$  is given by

$$x_n = a^{2^n - 1}b^{2^n}.$$

(b) Use part (a) to compute

$$\lim_{n \to +\infty} x_n.$$

3. Show that the following recursive sequence is convergent and calculate the limit

$$a_n = \frac{7}{3} - \frac{1}{1 + a_{n-1}}, \quad a_1 = 1.$$

4. This question is going to show that, whenever we have a sequence that is defined recursively, we need to show that it converges, and that computing the candidates for the limit is not

Consider the sequence defined as  $a_1 = 10$ ,  $a_{n+1} = a_n^2$  for  $n \ge 1$ .

- (a) Show that, if the limit of  $(a_n)$  exists, then it is either 0 or 1.
- (b) Show that  $(a_n)$  diverges to  $+\infty$ .
- 5. Compute the limit of  $a_n = \left(\frac{n+3}{n+1}\right)^n$  using subsequences. (Hint: first, manipulate the definition of  $a_n$  so that it looks more to the sequence of a previous exercise, then use the subsequence with odd indices.)
- 6. State if the following statements are true or false. If you think the statement is true, then prove that; otherwise, provide a counterexample.
  - (a) If a sequence is not bounded above, it must be increasing.
  - (b) Any monotone sequence has a convergent subsequence.
  - (c) If  $(a_n)$  has no divergent subsequence, then  $(a_n)$  is convergent.
  - (d) If  $(a_n)$  is Cauchy convergent, then also  $(|a_n|)$  is Cauchy convergent.
  - (e) If  $(a_n)$  is a Cauchy sequence, then the sequence  $b_n = c \cdot a_n$ ,  $c \neq 0$  is a Cauchy sequence.
  - (f) If  $(a_n)$  is Cauchy, there exists  $\varepsilon > 0$  such that  $|a_m a_n| < \varepsilon$  for all  $m, n \in \mathbb{N}$ .
  - (g) Any sequence has a convergent subsequence.
  - (h) If  $(a_n)$  and  $(b_n)$  are Cauchy sequences, then the sequence  $c_n = a_n + b_n$  is a Cauchy sequence.
- 7. Show if the sequence

$$a_n = \frac{\sin(a_{n-1}) + 1}{2} \qquad a_1 = 0$$

satisfies the definition of Cauchy sequence. (*Hint: Use the trigonometric formulas from Exercise Sheet 1*)

- 8. Let  $(a_n)$  and  $(b_n)$  be two sequences. Show the following facts.
  - (a) Assume that  $(a_n)$  and  $(b_n)$  are bounded. Prove that  $\limsup (a_n + b_n) \leq \limsup a_n + \limsup b_n$ .
  - (b) Provide an example of sequences  $(a_n)$  and  $(b_n)$  such that the inequality in part (a) is strict.
  - (c) Assume that  $\liminf a_n = 5$ . Show that there exists  $N \in \mathbb{N}$  such that, for any  $n \geq N$ ,  $a_n \geq 4$ .
  - (d) Assume  $(b_n)$  is defined as follows:

$$b_n = \begin{cases} \frac{100}{n} & \text{if } 3|n\\ 2 - \frac{1}{n} & \text{if } 3|n - 1\\ \frac{1}{2} & \text{if } 3|n - 2 \end{cases}$$

Compute  $\limsup b_n$ ,  $\liminf b_n$ , and exhibit a subsequence of  $(b_n)$  converging to  $\limsup b_n$  and a subsequence converging to  $\liminf b_n$ .

- 9. State if the following statements are true or false. If you think the statement is true, then prove that; otherwise, provide a counterexample.
  - (a) If  $(x_n)$  is a sequence that converges to 0, then the series  $\sum_{n=0}^{\infty} x_n$  converges.
  - (b) Let  $(x_n)$  and  $(y_n)$  be two sequences such that  $0 \le x_n \le y_n$  for all  $n \in \mathbb{N}$ . If the series  $\sum_{n=0}^{\infty} x_n$  diverges, then the series  $\sum_{n=0}^{\infty} y_n$  diverges.
  - (c) Let  $(x_n)$  and  $(y_n)$  be sequences such that  $x_n \leq y_n$  for all  $n \in \mathbb{N}$ . If the series  $\sum_{n=0}^{\infty} x_n$  diverges, then the series  $\sum_{n=0}^{\infty} y_n$  diverges.

- (d) Let  $(x_n)$  and  $(y_n)$  be sequences. If the series  $\sum_{n=0}^{\infty} x_n$  converges and the sequence  $(y_n)$  converges, then the series  $\sum_{n=0}^{\infty} x_n y_n$  converges.
- 10. For each of the following, determine whether the series is convergent or divergent.

  - (a)  $\sum_{n=0}^{\infty} \frac{1}{n^2 + n + 3}$ (b)  $\sum_{n=0}^{\infty} \frac{2n^2 + 1}{3n^2 + 2}$ (c)  $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+3}}$
- 11. For each of the following, determine whether the series is convergent or divergent.
  - (a)  $\sum_{n=0}^{\infty} \frac{\sin(2n^2)}{n^2+3}$ (b)  $\sum_{n=1}^{\infty} \frac{(-10)^n}{4^{2n+1}(n+1)}$

  - (c)  $\sum_{n=0}^{\infty} (-1)^n \frac{n}{n+3}$
- 12. For each of the following, determine whether the series is convergent or divergent.
  - (a)  $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n^2+3)}}$
  - (b)  $\sum_{n=1}^{\infty} \frac{\sqrt{n^5}}{n^3+1}$ (c)  $\sum_{k=1}^{\infty} \frac{(k!)^2}{(2k)!}$
- 13. (Multiple choice) The series

$$\sum_{n=0}^{\infty} \left(\frac{1}{\sqrt{2}}\right)^n$$

is

- (a) divergent.
- (b) converges to  $2 + \sqrt{2}$ .
- (c) converges to  $2-\sqrt{2}$ .
- (d) cannot be determined.
- 14. (Multiple choice) The series

$$\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{\sqrt{n}}$$

- (a) converges absolutely.
- (b) converges, but not absolutely.
- (c) diverges to  $+\infty$ .
- (d) diverges to  $-\infty$ .
- 15. Terminate the proof that we started in class showing the convergence of  $\sum_{i=1}^{\infty} \frac{(-1)^i}{i}$ . This is what we have proven in class and that you can assume:
  - (a) the subsequence  $(y_k)$  of  $(s_n)$ ,

$$y_k := s_{2k+1} = \sum_{i=0}^{2k+1} \frac{(-1)^i}{i}$$

is strictly increasing;

(b)  $(y_k)$  is bounded; in particular  $(y_k)$  converges to a limit  $y \in \mathbb{R}$ .

(Hint: Show that  $(s_n)$  is a Cauchy sequence. Use the fact that since  $(y_k)$  converges, then it is Cauchy, and that  $s_{2k} - \frac{1}{2k+1} = s_{2k+1}$ .)