

Analysis 1 - Exercise Set 5

Remember to check the correctness of your solutions whenever possible.

To solve the exercises you can use only the material you learned in the course.

- 1. If a sequence (x_n) converges, then its limit is unique.
- 2. Assume that $\lim_{n\to\infty} x_n = x \in \mathbb{R}$. Prove the following fact: for any $l \in \mathbb{N}$, $\lim_{n\to\infty} x_{n+l}$ exists and $\lim_{n\to\infty} x_{n+l} = x$.
- 3. Let (a_n) be a sequence. Specify if the following statements are true or false. If you think that the statement is true, you should prove it, otherwise, provide a counterexample to the statement.

$$\lim_{n\to\infty} a_n = 0,$$

then

$$\lim_{n \to \infty} (a_n \sin(n)) = 0.$$

(b) If (a_n) is bounded, then

$$\lim_{n \to \infty} (a_n e^{-n}) = 0.$$

(c) If

$$\lim_{n \to \infty} a_n = 0,$$

then the sequence $b_n := a_n e^n$ is unbounded.

- 4. Compute the following limits:
 - (a) $\lim_{n \to \infty} \frac{2^n 3^n}{3^n + 1}$
 - (b) $\lim_{n \to \infty} n^3 \left(1 \cos\left(\frac{1}{n}\right)\right) \sin\left(\frac{1}{n}\right)$

(Hint: Use the fact that $\lim_{m\to\infty} \frac{\sin(\frac{1}{m})}{\frac{1}{m}} = 1$ and $\lim_{m\to\infty} \cos(\frac{1}{m}) = 1$.)

- (c) $\lim_{n\to\infty} \frac{\sin^2(n)}{2^n}$
- (d) $\lim_{n \to \infty} n(\sqrt{n^4 + 6n + 3} n^2)$
- 5. Let (a_n) be a sequence. Specify if the following statements are true or false. If you think that the statement is true, you should prove it, otherwise, provide a counterexample to the statement.
 - (a) If

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1,$$

then (a_n) converges.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1,$$

then (a_n) diverges.

6. Determine if the sequence (a_n) is convergent or not in the following cases.

1.
$$a_n = \frac{n}{e^n}$$
.

2.
$$a_n = \frac{10^n}{n!}$$

3.
$$a_n = \frac{n^n}{e^n}$$

4.
$$a_n = \frac{n!}{n^n e^{\frac{n}{2}}}$$

7. Determine if the following sequences converge or not. If the sequence is convergent, determine its limit.

(a)
$$a_n = \frac{3n^2 - 1}{10n + 5n^2}$$

(b)
$$a_n = \frac{3^{2n}}{n}$$

(c)
$$a_n = \frac{(-1)^n n^2}{2^n}$$

8. Compute the following limits:

(a)
$$\lim_{n\to\infty} \frac{n^3}{7^n} \cos\left(n^2\right)$$

(b)
$$\lim_{n \to \infty} \frac{\sin(n+1) - \sin(n-1)}{\cos(n+1) + \cos(n-1)}$$

(Hint: Use trigonometric formulas from Exercise Sheet 1)

(c)
$$\lim_{n \to \infty} \frac{\sin(\sqrt{n^3 + n^2 + 1})}{n^3 + n^2 + 1}$$

- 9. Give an example of a sequence (x_n) such that the sequence $y_n = x_{n+1} x_n$ converges to 0 but (x_n) itself is divergent.
- 10. Prove that if $\lim_{n\to\infty} x_n = +\infty$ and (y_n) bounded from below, then $\lim_{n\to\infty} (x_n + y_n) = +\infty$. Show that this is true also if $+\infty$ is replaced with $-\infty$ and (y_n) is assumed to be bounded from above.
- 11. Prove that if $x_n \neq 0$, for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} |\frac{x_n}{x_{n-1}}| = +\infty$ then (x_n) is unbounded and, thus it diverges. Construct examples of sequences (x_n) satisfying the conditions above and such that $\lim_{n \to \infty} x_n = +\infty$ (resp. $\lim_{n \to \infty} x_n = -\infty$).
- 12. Consider the recursive sequence $a_{n+1} = 7 \frac{10}{a_n}$, with initial datum $a_1 = 4$. Compute the first three values. Then, show that it is bounded by 2 and 5, that it is increasing, and then compute the limit.
- 13. Consider the recursive sequence $a_{n+1} = \sqrt{8a_n 7}$, with initial datum $a_1 = 4$. Show that it is bounded by 1 and 7, that it is increasing, and then compute the limit.
- 14. Find the limit for $x_n = \frac{\sin(x_{n-1})}{2}$, $x_0 = 1$. [Hint: use the fact $|\sin(x)| \le |x|$ for all x]
- 15. Let (a_n) , (b_n) be sequences. State if the following statements are true or false. If you think that the statement is true, you should prove it, otherwise, provide a counterexample to the statement.

- (a) If (a_n) is monotone, then $\lim_{n\to\infty} a_n$ exists or $\lim_{n\to\infty} a_n = +\infty$ or $\lim_{n\to\infty} a_n = -\infty$.
- (b) If (a_n) and (b_n) are monotone, then the sequence $c_n = a_n + b_n$ is monotone.
- (c) If $\lim_{n\to\infty} |a_{n+1}-a_n|=0$, then (a_n) is a bounded sequence.
- (d) An unbounded sequence can have a convergent subsequence.
- (e) If (a_n) has no convergent subsequence, then (a_n) is unbounded.
- 16. Compute the following limits:

(a)
$$\lim_{n \to \infty} \left(1 + \frac{2}{n}\right)^n$$

 $(Hint: e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = \lim_{n \to \infty} \frac{(n+1)^n}{n^n}, \text{ and } e = \lim_{n \to \infty} \left(1 + \frac{1}{n+1}\right)^{n+1} = \lim_{n \to \infty} \frac{(n+2)^{n+1}}{(n+1)^{n+1}})$

(b)
$$\lim_{n \to \infty} (1 - \frac{1}{n})$$

 $(Hint: e^{-1} = \left(\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n\right)^{-1} = \lim_{n \to \infty} \left(\left(1 + \frac{1}{n}\right)^{-n}\right) = \lim_{n \to \infty} \frac{n^n}{(n+1)^n})$
(c) $\lim_{n \to \infty} \left(1 - \frac{1}{n^2}\right)^n$

(c)
$$\lim_{n \to \infty} \left(1 - \frac{1}{n^2}\right)^n$$

(*Hint*: $\left(1 - \frac{1}{n^2}\right) = \left(1^2 - \left(\frac{1}{n}\right)^2\right)$)

- 17. Let $a_n = \left(1 + \frac{2}{n}\right)^n$. We are going to compute its limit using subsequences
 - (a) Compute $\lim_{n\to\infty} a_{2n}$.
 - (b) Show that $a_n \leq a_{n+1}$.
 - (c) Use subsequences, squeeze theorem and monotone convergence to show that the sequence (a_n) is convergent and its limit.