

Analysis 1 - Exercise Set 4

Remember to check the correctness of your solutions whenever possible.

To solve the exercises you can use only the material you learned in the course.

- 1. (a) Prove that for all $n \in \mathbb{N}$, $(\cos(x) + i\sin(x))^n = \cos(nx) + i\sin(nx)$.
 - (b) Find all the solutions to the equation $x^n = 1$, for $n \in \mathbb{N}$.
- 2. Find all the solutions of the following equations in \mathbb{C} .
 - (a) $z^2 + 6z + 12 4i = 0$
 - (b) $(z^3 1)^2 = -1$
- 3. (a) Let $\{a_n\}$ be a sequence and let $\{b_n\}$ be the sequence defined as $b_n := |a_n|$. Prove that $\{a_n\}$ is bounded if and only if so is $\{b_n\}$.
 - (b) Prove that if q < -1, then the sequence $x_n = aq^n$, $a \in \mathbb{R}$, is unbounded.
 - (c) Provide an example of a sequence $\{a_n\}$ that is bounded above and such that $\{|a_n|\}$ is not bounded above.
- 4. Let $\{x_n\}$ be the recursive sequence defined as

$$\begin{cases} x_n = x_{n-1} + (-1)^n n^2 \\ x_0 = 0. \end{cases}$$

Prove that for all $m \in \mathbb{N}$

$$\begin{cases} x_{2m} = (2m+1)m \\ x_{2m+1} = -(2m+1)(m+1). \end{cases}$$

[Hint: use induction on m].

Is $\{x_n\}$ bounded from above? Is it bounded from below?

- 5. Check if the sequence starting from n=1 defined as $a_n=\frac{\sin(\frac{1}{n})}{n}$ is monotone, and if it converges or diverges.
- 6. Check if the sequence

(a)
$$a_n = \frac{n}{4n-1}$$

(b)
$$a_n = (-1)^n \frac{n^2 + \pi}{n}$$
 starting from $n = 1$

is monotone, and if it converges or diverges.

7. Find the limit of the following sequences, if they exist:

(a)
$$a_n = \frac{5n^2 - 3n + 2}{3n^2 + 7}$$

(b)
$$a_n = (-1)^n \frac{\sqrt[4]{n}}{\sqrt[3]{n}}$$

(c)
$$a_n = \frac{\sqrt{n-n+n^2}}{2n^2+n^{\frac{3}{2}}+n}$$

(d)
$$a_n = \sin(\frac{1}{n}) + \frac{n-2}{n\sqrt{2}+77}$$

- 8. Let (a_n) be a sequence. Specify if the following statements are true or false. If you think that the statement is true, you should prove it, otherwise, provide a counterexample to the statement.
 - (a) If $\{a_n\}$ is bounded then $\{a_n\}$ is convergent.
 - (b) If $\{a_n\}$ is bounded and $a_n \geq 0$, $\forall n \in \mathbb{N}$, then $\{a_n\}$ is convergent.
 - (c) If $\{a_n\}$ is monotone and unbounded, then it is bounded from above.
 - (d) If $\{a_n\}$ is monotone and unbounded, then it is bounded from below.
 - (e) If $\{a_n\}$ is bounded and monotone then $\{a_n\}$ is convergent.
 - (f) If $\{a_n\}$ is convergent, then there exists $\epsilon > 0$ such that $|a_n| \leq \epsilon$ for all $n \in \mathbb{N}$.
 - (g) Let $\{a_n\}$ be a sequence and let $\{b_n\}$ be the sequence defined as $b_n := |a_n|$. Then, $\lim_{n\to\infty} a_n = 0$ if and only if $\lim_{n\to\infty} b_n = 0$.
- 9. Let p>q be natural numbers. Show that if $P(x)=\sum_{i=0}^p c_i x^i$ is a polynomial with real coefficients of degree p (that is, $c_p\neq 0$), and $Q(x)=\sum_{j=0}^q b_j x^j$ is a polynomial with real coefficients of degree q (that is, $b_q\neq 0$), then the sequence (a_n) defined as

$$a_n := \frac{P(n)}{Q(n)}$$
 is unbounded.

10. Find the limit of the following sequences, if they exist:

(a)
$$a_n = \sqrt{2n^2 + 3} - \sqrt{(2n+1)(n+4)}$$

(b)
$$a_n = \sqrt{n}(\sqrt{n^3 + 2n} - \sqrt{n^3 + 4})$$

11. Find the limit of the following sequences:

(a)
$$a_n = \sin\left(\frac{1}{n}\right)$$

(b)
$$a_n = \frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}}$$

(c)
$$a_n = n \cdot \sin\left(\frac{2n+3}{n^3}\right)$$

Hint: remember that for $0 < x < \pi/2$ we have the inequalities:

$$0 \le \sin(x) \le x \le \tan(x) \qquad \Rightarrow \qquad 1 \le \frac{x}{\sin(x)} \le \frac{1}{\cos(x)} \qquad \Rightarrow \qquad \cos(x) \le \frac{\sin(x)}{x} \le 1$$

$$\Rightarrow \qquad \cos(x)^2 \le \left(\frac{\sin(x)}{x}\right)^2 \le 1 \qquad \Rightarrow \qquad 1 - \sin(x)^2 \le \left(\frac{\sin(x)}{x}\right)^2 \le 1$$

$$\Rightarrow \qquad 1 - x^2 \le \left(\frac{\sin(x)}{x}\right)^2 \le 1 \qquad \Rightarrow \qquad \sqrt{1 - x^2} \le \frac{\sin(x)}{x} \le 1.$$

12. Show that the sequence given by

$$a_1 = 2$$

$$a_n = \frac{1}{2}(a_{n-1} + 6)$$

is increasing and bounded above by 6. (Hint: Use induction for both)

- 13. Let $\{a_n\}$ be a sequence. Specify if the following statements are true or false. If you believe that the statement is true, you should give a proof, otherwise, provide a counterexample to the statement.
 - (a) If

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1,$$

then $\{a_n\}$ converges.

(b) If

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1,$$

then $\{a_n\}$ diverges.

- 14. Consider two sequences of real numbers a_n and b_n . Assume that $0 < a_n < 3$ and $-4 < b_n < 0$ for every n. Which of the following claims is true? (Only one choice is correct)
 - (a) The sequence $\frac{1}{a_n}$ is bounded.
 - (b) The sequence $a_n b_n$ is bounded below by -4.
 - (c) The sequence $a_n + b_n$ has to be negative.
 - (d) The sequence $a_n b_n$ is bounded below by -12.
 - (e) The sequence $\frac{a_n}{b_n}$ is bounded.
- 15. Let z and w be two complex numbers. Which of the following statements is true? (Only one choice is correct)
 - (a) $\overline{\left(\frac{z}{w}\right)} = \frac{\overline{z}}{w}$
 - (b) $|z| = z \cdot \overline{z}$
 - (c) $\operatorname{Im}(z+w) = \operatorname{Re}(i(z+w))$
 - (d) $\operatorname{Re}(z+w) = \operatorname{Im}(i(z+w))$
 - (e) $i\operatorname{Re}(z+w) = \operatorname{Im}(z+w)$
- 16. Prove the following properties of the binomial coefficients:
 - (a) Symmetry: $\binom{n}{k} = \binom{n}{n-k}$;
 - (b) Binomial formula: Assuming the recurrence formula that you find in (c) below, prove that $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$. [*Hint*: use induction on n. You may use the result from (c).]
 - (c)* Recurrence: $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$. Deduce from this that $\binom{n}{k} \in \mathbb{N}$; [Hint: use induction on n.]