Analysis I (English) Roberto Svaldi and Stefano Filipazzi Fall Semester 2021–2022

Analysis 1 - Exercise Set 2

Remember to check the correctness of your solutions whenever possible.

To solve the exercises you can use only the material you learned in the course.

- 1. (a) Let $p \in \mathbb{N}$ be a prime number. Prove that \sqrt{p} is not rational.
 - (b) Show that $\sqrt{7+\sqrt{17}}$ is irrational. (Hint: Use part (a) to prove that $\sqrt{17}$ is irrational. Now assume that $\sqrt{7+\sqrt{17}}$ is rational and show that it contradicts the fact that $\sqrt{17}$ is irrational.)
 - (c) Show that $\sqrt{2} + \sqrt[3]{3}$ is irrational. (Hint: Let $r = \sqrt{2} + \sqrt[3]{3}$ and assume it is rational. Compute $(r \sqrt{2})^3$ and use the result that you obtained plus the assumption on the rationality of r to find a contradiction.)
- 2. Let S be a subset of \mathbb{R} . Let a be a lower bound (respectively an upper bound) for S. Show that any real number b such that b < a (respectively b > a) then b is also a lower bound (resp. an upper bound) for S.
- 3. Let A be a bounded interval in \mathbb{R} , i.e., A is a subset of \mathbb{R} of either one of the following forms: [a,b], or [a,b[, or
 - (a) $\sup(A) \in A$ and $\inf(A) \in A$.
 - (b) If $\sup(A) \in A$ and $\inf(A) \in A$ then A is closed.
 - (c) If A is closed then $\sup(A) \in A$ and $\inf(A) \in A$.
 - (d) If $\sup(A) \notin A$ and $\inf(A) \notin A$ then A is open.
 - (e) If A is open then $\sup(A) \notin A$ and $\inf(A) \notin A$.
- 4. Let A be a bounded interval in \mathbb{R} , i.e., A is a subset of \mathbb{R} of either one of the following forms: [a,b], or [a,b[, or [a,b[, or [a,b[, or [a,b[, or [a,b[, and a< b. Show that inf A=a, sup A=b. When is the infimum (resp. maximum) of A a minimum (resp. a maximum)?
- 5. Let S be a subset of \mathbb{R} . Show that if $\sup(S)$, $\inf(S)$, $\max(S)$, $\min(S)$ exist, then they are unique.
- 6. Let $S \subseteq \mathbb{R}$ be the subset of the real numbers defined as $S := \{x \in \mathbb{R} \mid x \in \mathbb{Q} \text{ and } x^3 \geq 5\}$.
 - (a) Show that S is not empty (i.e., exhibit an element of S).
 - (b) Show that $\sqrt[3]{5}$ is a lower bound for S.
 - (c) Show that $\inf(S) = \sqrt[3]{5}$. (Hint: you should use the denseness of \mathbb{Q} in this step).

Hint: you can use the fact that every real number has a unique real cubic root, and that $a^3 \leq b^3$ if and only if $a \leq b$.

7. For each of the following sets, check if they are bounded or unbounded. When the set is bounded from above or below, give a few examples of lower and upper bounds, then compute the supremum and infimum and check if maximum and minimum exist.

- (a) $A = \{x \in \mathbb{R} \mid x^2 \le 2\}.$
- (b) $B = \{x \in \mathbb{R} \mid x \in \mathbb{Q} \text{ and } x^2 \le 2\}.$
- (c) $C = \{(-1)^n + \frac{1}{n+1} | n \in \mathbb{N} \}.$
- 8. Let a be a real number. Assume that $a \ge 0$. Prove that a = 0 if and only if for any $\varepsilon > 0$, $a \le \epsilon$.
- 9. Let L and L' be two real numbers. Prove that the following are equivalent:
 - (a) L = L';
 - (b) for every $\epsilon > 0$, $|L L'| \le \epsilon$.
- 10. Let $S \subseteq \mathbb{R}$ be a non-empty subset. Assume that S is bounded from above and that $\sup(S) \notin S$. Show that the following fact holds: for every $\epsilon > 0$, $S \cap]\sup(S) \epsilon, \sup(S)[$ is infinite (i.e., there are infinitely many elements of S in $]\sup(S) \epsilon, \sup(S)[)$.

Hint: In this problem, you can freely use that a finite non-empty set has both maximum and minimum.

11. Let S be a non-empty and bounded subset of \mathbb{R} . We define

$$S' := \{ x \in \mathbb{R} | -x \in S \}.$$

Show that

- (a) If M is an upper bound of S, then -M is a lower bound of S'.
- (b) If m is a lower bound of S, then -m is an upper bound of S'.
- (c) $\sup(S) = -\inf(S')$.
- (d) $\inf(S) = -\sup(S')$.
- 12. Let S be the subset of \mathbb{R} defined as

$$S := \bigcap_{n=1}^{\infty} \left[0, 1 + \frac{1}{n}\right]$$

Compute $m := \sup S$. Is m the maximum of S? (Hint: $x \in S \iff \forall n \in \mathbb{N}, x \in [0, 1 + \frac{1}{n}]$)

13. (Multiple choice) The subset S of \mathbb{R}^2 defined as

$$S := \{(x, y) \in \mathbb{R}^2 \mid x = -y, -y = x - 1\}$$

is:

- (a) A point.
- (b) A line.
- (c) A circle.
- (d) Empty.
- 14. (Multiple choice) The subset S of \mathbb{R}^2 defined as

$$S := \{(x,y) \in \mathbb{R}^2 \mid \sqrt{x^2 + (y+3)^2} = 3\sqrt{x^2 + y^2}\}$$

is:

- (a) A point.
- (b) A line.
- (c) A circle.
- (d) Empty.

¹In this exercise (x, y) does not denote an open interval between x and y, but it instead denotes the point of coordinates x and y in \mathbb{R}^2