

Analysis 1 - Exercise Set 13

Remember to check the correctness of your solutions whenever possible.

To solve the exercises you can use only the material you learned in the course.

- 1. State on which closed intervals the following functions are integrable and compute the antiderivatives.
 - (a) $f(x) = e^x$;
 - (b) $f(x) = \sinh(x)$;
 - (c) $f(x) = (ax + b)^s$ with $s \in \mathbb{Z}$ and $a, b \in \mathbb{R} \setminus \{0\}$;
 - (d) $f(x) = \cos(x)^3;$

(e)
$$f(x) = \begin{cases} 1 & x = 0, \\ 0 & x \neq 0; \end{cases}$$

(f)
$$f(x) = \cot(x), \cot(x) := \frac{\cos(x)}{\sin(x)}$$

(g)
$$f(x) = |x|^s$$
, $s > 0$.

- 2. Determine the number c that satisfies the Mean Value Theorem for Integrals for the function $f(x) = x^2 + 3x + 2$ on the interval [1, 4].
- 3. Let

$$f(x) = \begin{cases} \sin(x) & 0 \le x \le \frac{\pi}{2} \\ 1 & \frac{\pi}{2} \le x \le 3 \end{cases}$$

Compute $\int_0^3 f(x)dx$.

- 4. **True/False:** If the statement is true you should prove it. If it is false you should give a counterexample. Let F be an anti-derivative of f on [a,b].
 - (a) If $f(x) \leq 0$ for all $x \in [a, b]$, then $F(x) \leq 0$ for all $x \in [a, b]$.
 - (b) For all $x \in [a, b]$, we have $F(x) = \int_a^x f(t) dt$.
- 5. Show that:
 - (a) if $f:[-a,a]\to\mathbb{R}$ is an integrable odd function then $\int_{-a}^{a}f(x)dx=0$;
 - (b) if $f:[-a,a]\to\mathbb{R}$ is an integrable even function then $\int_{-a}^a f(x)dx=2\int_0^a f(x)dx$.
- 6. Calculate the following formal integrals.
 - (a) $\int \sin(x)^2 dx$
 - (b) $\int \arcsin(x) dx$
 - (c) $\int \frac{\sinh(x)}{e^x + 1} dx$

- (d) $\int e^{ax} \cos(bx) dx$ $(a \neq 0)$, (Hint: apply integration by parts multiple times until you
- 7. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function with a period T > 0. Let F be defined by

$$F(x) = \int_{0}^{x} f(t) dt.$$

Show that F is periodic with period T if and only if

$$\int_{0}^{T} f(t) dt = 0.$$

- 8. Calculate the following integrals.
 - (a) $\int_{\pi^2/16}^{\pi^2/9} \cos(\sqrt{x}) dx$
 - (b) $\int_0^{\pi^{1/2017}} \sin(\sin(x^{2017})) \cos(x^{2017}) x^{2016} dx$
- 9. True/False: Let $I \subset \mathbb{R}$ be an open non-empty and bounded interval and let $f: I \to \mathbb{R}$ be a continuous function. Let $[a,b] \subseteq I$. If the statement is true you should prove it. If the statement is false you should give a counter example.

(a) If
$$\int_a^b f(x) dx = 0$$
, then f has a zero $[a, b]$.

(b) If
$$\int_a^b f(x) dx \ge 0$$
, then $f(x) \ge 0$ for all $x \in [a, b]$.

(c) If
$$f(x) < 0$$
 for all $x \in [a, b]$, then $\int_a^b f(x) dx < 0$.

- 10. Calculate the following formal integrals.
 - (a) $\int \frac{\sin(x)}{\cos(x)^3} dx$
 - (b) $\int x^2 \cos(x) dx$
 - (c) $\int x \log x \, dx$
 - (d) $\int \frac{1}{\sqrt{4-3x^2}} dx$ (Hint: recall (arcsin x)')
 - (e) $\int (2x+2)e^{x^2+2x+3} dx$
 - (f) $\int \frac{x^2+1}{x^3+3x} dx$
 - (g) $\int \frac{x^3}{(1+x^4)^{\frac{1}{3}}} dx$

 - (h) $\int \frac{\sin(\log(x))}{x} dx$ (i) $\int (2x+5)(x^2+5x)^7 dx$
- 11. Let f be a continuous function on a closed interval [a,b]. Show that |f| is integrable and $|\int_a^b f(x)dx| \leq \int_a^b |f(x)|dx$.
- 12. Calculate the following integral:

$$\int_0^{\pi/2} \sin(x)^5 dx$$

(Hint: remember $\cos^2(x) + \sin^2(x) = 1$ and try to make a substitution of the form $u = \cos x$).

13. Prove that if $f, g: I \to \mathbb{R}$ are square-integrable continuous functions over I^1 , then

$$\left|\int_I f(x)g(x)dx\right| \leq \left(\int_I f(x)^2 dx\right)^{\frac{1}{2}} \left(\int_I g(x)^2 dx\right)^{\frac{1}{2}}$$

This is known as the Cauchy–Schwarz inequality. (Hint: If at least one of the functions is zero, then there is nothing to prove. Suppose both are non-zero. Evaluate $\int_I (f(x) - \lambda g(x))^2 dx$ and choose $\lambda \in \mathbb{R}$ carefully.)

Revision Exercises

Questions 14-17 are multiple choice questions. In each of the questions you should explain why your choice is correct.

- 14. The equation $x(e^{x} e^{-x}) e^{x} = 0$
 - (a) has no solution belonging to the interval $[0, +\infty[$.
 - (b) has exactly one real solution.
 - (c) has no solution belonging to the interval $]-\infty,0[$.
 - (d) has at least two real solutions.
- 15. Let the one-to-one function $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \sinh(\sinh(x))$ and let a = f(1). Then the derivative of the inverse function $g = f^{-1}$ at a is
 - (a) $g'(a) = \frac{1}{\cosh(\sinh(1))}$.
 - (b) $g'(a) = \frac{1}{\cosh(\sinh(a))\cosh(a)}$.
 - (c) $g'(a) = \frac{1}{\cosh(\sinh(1))\cosh(1)}$.
 - (d) $g'(a) = \frac{1}{\cosh(\sinh(a))\cosh(1)}$.
- 16. The limit $\lim_{x\to 0} \frac{e^{|x|}-1-|x|}{x^2}$ is
 - (a) 0.
 - (b) 1.
 - (c) $\frac{1}{2}$.
 - (d) Does not exist.
- 17. Let the function $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = e^{e^x 1}$. The truncated expansion of order 2 of f around x = 0 is
 - (a) $f(x) = 1 + x + x^2 + x^2 \epsilon(x)$
 - (b) $f(x) = 2x + x^2 + x^2 \epsilon(x)$
 - (c) $f(x) = 1 + x + \frac{1}{2}x^2 + x^2\epsilon(x)$
 - (d) $f(x) = 1 + x + 2x^2 + x^2 \epsilon(x)$

where $\lim_{x\to 0} \epsilon(x) = 0$.

Questions 18-22 are true or false questions. If the statement is true, you should prove it. If it is false, you should give a counter example.

18. For a < b in \mathbb{R} , let a function $f : [a, b] \to \mathbb{R}$ be continuous on [a, b] and twice differentiable on [a, b]. If f(a) = f(b) = 0, then there exists $c \in [a, b]$ such that f''(c) = 0.

¹Meaning that f^2 and g^2 are integrable.

- 19. Define $f: \mathbb{R} \to \mathbb{R}, f(x) = \int_0^x |t| dt$. Then $f'(x) = x \quad \forall x \in \mathbb{R}$.
- 20. Let $f: I \to \mathbb{R}$ be differentiable over an open interval $I \subset \mathbb{R}$. Then the derivative of f at the point $y \in I$ satisfies

$$f'(y) = \lim_{x \to 0} \frac{f(y+x) - f(y)}{x}.$$

- 21. Let $f:]0,1[\to \mathbb{R}$ be a differentiable function on]0,1[. Then the function $f':]0,1[\mapsto \mathbb{R}$ is differentiable on]0,1[.
- 22. A function $f: \mathbb{R} \to \mathbb{R}$ s.t. $\forall \varepsilon > 0$ and $\forall x, y \in \mathbb{R}$ with the following property

$$|x - y| \le 2\varepsilon \Rightarrow |f(x) - f(y)| \le \varepsilon$$

is continuous on \mathbb{R} .