

Analysis 1 - Exercise Set 11

Remember to check the correctness of your solutions whenever possible.

To solve the exercises you can use only the material you learned in the course.

- 1. (a) Let $a, b \in \mathbb{Z}$, b > 0. Show that $\sqrt[b]{x^a} = e^{\frac{a}{b}\log(x)}$ for all real numbers x > 0.
 - (b) Compute the derivative of the following functions:
 - (i) $f(x) = x^a : \mathbb{R}_+^* \to \mathbb{R}$, $a \in \mathbb{R}$; show that f is strictly increasing when a > 0 and strictly decreasing when a < 0;
 - (ii) $f(x) = a^x : \mathbb{R} \to \mathbb{R}_+^*$, $a \in \mathbb{R}_+^*$; show that f is strictly increasing when a > 1 and strictly decreasing when a < 1;
 - (iii) $f(x) = \log_a(x) : \mathbb{R}_+^* \to \mathbb{R}$, $a \in \mathbb{R}_+^*$; show that f is strictly increasing when a > 1 and strictly decreasing when a < 1;
- 2. State if the following are true or false.
 - (a) If $f: \mathbb{R} \to \mathbb{R}$ is differentiable and has two roots, that is, there exist $x \neq y \in \mathbb{R}$, f(x) = 0 = f(y), then f' has at least one root.
 - (b) The function $f(x) = \frac{\sin(x^2-2)}{e^{3x+1}+\sqrt{2x}}$ has a critical value in $]\sqrt{2}, \sqrt{2+\pi/2}[$.
- 3. Calculate the following limits:
 - (a) $\lim_{x\to 0} (1+\sin(x))^{1/x}$ (Hint: Write $(1+\sin(x))^{1/x} = e^{\left(\frac{1}{x}\log(1+\sin(x))\right)}$ and first calculate the limit of the exponent
 - (b) $\lim_{x\to\sqrt{3}} \frac{x^x-\sqrt{3^{\sqrt{3}}}}{x-\sqrt{3}}$. Remember that $x^x=e^{x\log(x)}$.
- 4. Find the Taylor expansion of order 5 at x = 0 of the following functions.
 - (a) $f(x) = \sin(x)$
 - (b) $f(x) = \log(1+x)$
 - (c) $f(x) = \tan(x)$
 - (d) $f(x) = \arccos(x)$
 - (e) $f(x) = \sinh(x)$
 - (f) $f(x) = \log(\cos(x))$
- 5. Use Taylor expansion to find the following limits.

(a)
$$\lim_{x\to 0} \frac{x - \frac{x^3}{6} - \sin(x)}{x^5}$$

(b)
$$\lim_{x\to 0} \frac{e^x + \sin(x) - \cos(x) - 2x}{x - \log(1+x)}$$

(c)
$$\lim_{x\to 0} \frac{x \sin(\sin(x)) - \sin(x)^2}{x^6}$$

(d)
$$\lim_{x\to 0} \frac{\sqrt[3]{1-x}-1}{\sqrt[4]{1-x}-1}$$

6. For a complex number of the form e^{ix} , $x \in \mathbb{R}$, we defined

$$\cosh(ix):=\frac{e^{ix}+e^{-ix}}{2},\quad \sinh(ix):=\frac{e^{ix}-e^{-ix}}{2}.$$

- (a) Compute the complex numbers $\cosh(ix)$, $\sinh(ix)$;
- (b) For each of the functions $\cosh(x), \sinh(x), \tanh(x), \coth(x)$ compute the derivative and the domain of the derivative.

Which of these functions are invertible on the domain \mathbb{R} ? which on \mathbb{R}_+^* ? Recall that

$$\cosh(x) = \frac{e^x + e^{-x}}{2}, \ \sinh(x) = \frac{e^x - e^{-x}}{2}, \ \tanh(x) = \frac{\sinh(x)}{\cosh(x)}, \ \coth(x) = \frac{1}{\tanh(x)}.$$

- (c) Compute the derivatives of the inverses of the functions in (b) and their domains.
- 7. For the following functions, find the stationary points and discuss whether they are points at which the function attains a local maximum or minimum.

(a)
$$f(x) = x \log^2(x)$$
 in $]0, +\infty[$

(b)
$$f(x) = 2\sin(x) + \cos(2x)$$
 in $\left[-\frac{1}{10}, \frac{1}{15}\right]$

8. Calculate the following limits:

(a)
$$\lim_{x \to +\infty} x \left(\tanh(x) - 1 \right)$$

(b) $\lim_{x\to+\infty}\frac{e^x}{x^n}$ where $n\in\mathbb{N}$. First find the limit using $e^x=\sum_{k=0}^{\infty}\frac{x^k}{k!}$ and then using l'Hopital's rule.

(c)
$$\lim_{x \to 0^+} x^n \log(x)$$

(d)
$$\lim_{x \to \infty} \frac{x^n}{\log(x)}$$

- 9. Calculate the derivative f' of the function $f(x) = \log_3(\cosh(x))$ and give the domain of f and f'.
- 10. State if the following are true or false.
 - (a) The function $f:[0,+\infty[\to[1,+\infty[$ defined by $f(x)=x^3-x+e^x$ is invertible.
 - (b) Let $a, b \in \mathbb{R}$, a < b. Given a continuous function $f : (a, b) \to \mathbb{R}$ which is not monotone, there exists a point $x_0 \in (a, b)$ at which f admits a local minimum.
- 11. Calculate the following limit $\lim_{x\to 2} \frac{\log(x-1)}{x-2}$
- 12. Let the function $f:]-\pi/2, \pi/2[\to \mathbb{R}$ be defined by $f(x) = \log(1+\sin(x))$. What is the Taylor expansion of order 3 of f at x=0.

(a)
$$x - \frac{x^3}{6} + \cdots$$

(b)
$$x + \frac{x^2}{2} - \frac{x^3}{6} + \cdots$$

(c)
$$x - \frac{x^2}{2} + \frac{x^3}{6} + \cdots$$

(d)
$$x + \frac{x^2}{2} + \frac{x^3}{3} + \cdots$$

Revision Exercises

- 13. Consider the bijective function $f:]1, \infty[\rightarrow] \infty, -2[$ defined as $f(x) = \log(x) 2x$. Then the derivative of the inverse function $f^{-1}(y)$ at y = -2 is
 - (a) $(f^{-1})'(-2) = -1$
 - (b) $(f^{-1})'(-2) = 1$
 - (c) $(f^{-1})'(-2) = -\frac{2}{5}$
 - (d) $(f^{-1})'(-2) = \frac{2}{5}$
- 14. For which of the following item you can prove, using the intermediate value theorem, that there exists a c in I such that f(c) = k.
 - (a) $f(x) = \frac{x^2+8}{x}$, k = 5, I = [1,3]
 - (b) $f(x) = x^2 + x + 1$, k = 2, I = [-2, 3]
 - (c) $f(x) = \frac{1}{2x-1}$, k = 0, I = [0, 1]
 - (d) $f(x) = \frac{10}{x^2+1}$, k = 8, I = [0, 1]
- 15. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \sin\left(\frac{1 - x^2}{1 + x^2}\right)$$

then.

- (a) $f'(x) = \cos\left(\frac{1-x^2}{1+x^2}\right) \frac{-4x}{1+x^2}$
- (b) $f'(x) = \cos\left(\frac{1-x^2}{1+x^2}\right) \frac{-4x}{(1+x^2)^2}$
- (c) $f'(x) = \sin\left(\frac{1-x^2}{1+x^2}\right) \frac{-4x}{(1+x^2)^2}$
- (d) $f'(x) = \sin\left(\frac{1-x^2}{1+x^2}\right) \frac{-4x}{1+x^2}$
- 16. Let the function $f: \mathbb{R} \setminus \{1/2\} \to \mathbb{R}$ be defined by

$$f(x) = \frac{2x^3 + x^2 + 2x + 1}{2x - 1}$$

then

- (a) f has at least one root in [-1,0]
- (b) f has at least one root in [0,1]
- (c) f has at least two roots in [-1, 1]
- (d) f has no roots
- 17. Let the function $f:]-1, 1[\setminus \{0\} \to \mathbb{R}$ be defined by $f(x) = \frac{x \log(1+x)}{\cos(x)-1}$. Let $g:]-1, 1[\to \mathbb{R}$ be an extension of f that is continuous at 0. Then
 - (a) g exist and g(0) = -2.
 - (b) g exist and g(0) = 2.
 - (c) g exist and g(0) = 0.
 - (d) f does not have a continuous extension at 0.

(Hint: Note that $\log(1) = 0$ so $\log(1+x) = \log(1+x) - \log(1)$. Then use the definition of derivative.)

- 18. Check if the following series are convergent

 - (a) $\sum_{n=0}^{+\infty} \frac{n}{(n+1)!}$ (b) $\sum_{n=0}^{+\infty} \frac{3n+1}{n^2(n+1)^2}$
- 19. For what values of t > 0 the following series converges? If convergent, what is the limit?

$$\sum_{n=0}^{+\infty} \left(\frac{t}{t+1} \right)^{2n}$$