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Abstract

In this talk, we will investigate how the late, great Leonhard Euler
originally proved the identity ¢(2) = .o, 1/n®> = 7%/6 way back in
1735. This will briefly lead us astray into the bewildering forest of com-
plex analysis where we will point to some important theorems and lemmas
whose proofs are, alas, too far off the beaten path. On our journey out
of said forest, we will visit the temple of the Riemann zeta function and
marvel at its significance in number theory and its relation to the prob-
lem at hand, and we will bow to the uber-famously-unsolved Riemann
hypothesis. From there, we will travel far and wide through the kingdom
of analysis, whizzing through a number N of proofs of the same original
fact in this talk’s title, where N is not to exceed 5 but is no less than
3. Nothing beyond a familiarity with standard calculus and the notion of
imaginary numbers will be presumed.

Note: These were notes I typed up for myself to give this seminar talk.
I only got through a portion of the material written down here in the
actual presentation, so I figured I'd just share my notes and let you read
through them. Many of these proofs were discovered in a survey article by
Robin Chapman (linked below). I chose particular ones to work through
based on the intended audience; I also added a section about justifying
the sin(z) “factoring” as an infinite product (a fact upon which two of
Euler’s proofs depend) and one about the Riemann Zeta function and its
use in number theory. (Admittedly, I still don’t understand it, but I tried
to share whatever information I could glean!)

http://empslocal.ex.ac.uk/people/staff/rjchapma/etc/zeta2.pdf


http://empslocal.ex.ac.uk/people/staff/rjchapma/etc/zeta2.pdf

The Basel Problem|was first posed by the Italian mathematician Pietro
Mengoli in 1644. His question was simple:

What is the value of the infinite sum ({(2) = Z =
n?

Of course, the connection to the Riemann zeta function came later. We’ll
use the notation for now and discuss where it came from, and its signif-
icance in number theory, later. Presumably, Mengoli was interested in
infinite sums, since he had proven already not only that the harmonic
series is divergent, but also
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and that Wallis’ product
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is correct. Let’s tackle the problem from the perspective of Euler, who
first “solved” the problem in 1735; at least, that’s when he first announced
his result to the mathematical community. A rigorous proof followed a few
years later in 1741 after Euler made some headway in complex analysis.
First, let’s discuss his original “proof” and then fill in some of the gaps
with some rigorous analysis afterwards.

Theorem 1. ((2) = %2

Proof #1, Euler (1735). Consider the Maclaurin series for sin(wx)
71_271,4»1 2n+1

sin(nzx) = mx — N

=:p(x)
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We know that the roots of sin(wx) are the integers Z. For finite polyno-
mials ¢(z), we know that we can write the function as a product of linear
factors of the form (1 — £), where g(a) = 0. Euler conjectured that the
same trick would work here for sin(7wz). Assuming, for the moment, that
this is correct, we have
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Notice that we have included the leading x factor to account for the root
at 0, and the 7 factor to make things work when x = 1. Now, let’s examine
the coefficient of 2 in this formula. By choosing the leading 7z term, and
then —Z—Z from one of the factors and 1 from all of the other factors, we

see that
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http://en.wikipedia.org/wiki/Basel_problem

Comparing this to the coefficient from the Maclaurin series, p(z)[z®] =
—T%:, we obtain the desired result!

O

So why is it that we can “factor” the function sin(7z) by using what we
know about its roots? We can appeal to the powerful Weierstrass factor-
ization theorem which states that we can perform this root factorization
process for any entire function over C.

Definition 2. A function f : D — C is said to be holomorphic on a
domain D C C provided Vz € D 36 such that the derivative

Yy—=z0 Yy — 20
exists Vzo € B(z,0). A function f is said to be entire if it is holomorphic
over the domain D = C.

There are two forms of the theorem, and they are essentially converses
of each other. Basically, an entire function can be decomposed into factors
that represent its roots (and their respective multiplicities) and a nonzero
entire function. Conversely, given a sequence of complex numbers and a
corresponding sequence of integers satisfying a specific property, we can
construct an entire function having exactly those roots.

Theorem 3 (Weierstrass factorization theorem). Let f be an entire func-
tion and let {an} be the nonzero zeros of f repeated according to multi-
plicity. Suppose f has a zero at z = 0 of order m > 0 (where order 0
means f(0) # 0). Then 3g an entire function and a sequence of integers
{pn} such that

F(2) = 2™ exp(g(2)) f_O[ By, (*)
where
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This is a direct generalization of the Fundamental Theorem of Algebra.
It turns out that for sin(7z), the sequence p, = 1 and the function g(z) =
log(m) works. Here, we attempt to briefly explain why this works. We
start by using the functional representation
. 1 iz —iTz
sin(mz) = % (e —e )

and recognizing that the zeros are precisely the integers n € Z. One of the
Lemmas that provides the bulk of the proof of the Factorization Theorem
requires that the sum

+:><> r 14+pn
>y (7) < 400
fan]

n=—oo


http://en.wikipedia.org/wiki/Weierstrass_factorization_theorem
http://en.wikipedia.org/wiki/Weierstrass_factorization_theorem

be finite for all 7 > 0, where the hat * indicates the n = 0 term is removed.
Since |an| = n, we see that p, = 1 Vn suffices, and so

o0

sin(mz) = zexp(g(2)) H (1 — %) exp(z/n)

n=-—oo
and we can cancel the terms exp(z/n)-exp(—z/n) and combine the factors
(1£2/n) to say

§(2) = sin(mz) = zexp(g(2)) = 1] (1- —2) — exp(g(2))2h(2)

for some entire function g(z). Now, a useful Lemma states that for analytic
functions f, and a function f = Hn fn, we have
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which immediately implies

This allows us to write
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f(z) exp(g(2)
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)+ z + nz::l 22 —n?
and according to previous analysis, we know
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which is based on integrating fv 7(2? —a®) ! cot(nz) dz for a non-integral
and where 7 is an appropriately chosen rectangle. As we enlarge -, the
integral goes to 0, and we get what we want. This means g(z) = ¢ for
some c. Putting this back into the formula above, we have

sin(rz)  e° 19 2?
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for all 0 < |z] < 1. Taking z — O tells us e = 7, and we’re done!

Remark 4. Notice that plugging in z = % and rearranging yields the
aforementioned Wallis’ product for m
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Now, let’s define the Riemann zeta function and discuss some of the
interesting number theoretical applications thereof.

Definition 5. The Riemann zeta function is defined as the analytic con-
tinuation of the function defined by the sum of the series
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This function is holomorphic everywhere except for a simple pole at
s = 1 with residue 1. A remarkable elementary result in this field is the
following.

Theorem 6 (Euler product formula). For all s > 1,
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Sketch. Start with the sum definition for {(s) and subtract off the sum
1
2

We see that this removes all terms 5 where 2 | n. We repeat this process
by taking the difference between
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and we see that this removes all of the terms nl where 2 | n or 3 | n or
both. Continuing ad infinitum, we have

(=) (0-7) (=5) (1-5) (=) o

and dividing by the factors on the left yields the desired result. O

Remark 7. To prove a neat consequence of this formula, let’s consider
the case s = 2. We have
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H (1 — 7) = @ =3~ 0.6079271016
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p prime p

Let’s think about what the product on the left hand side represents Given
two random integers m,n, the probability that 2 | m is § (and so is 2| n)
since “roughly half” of the integers are divisible by two Likewise, the
probability that 3 | m is & (and same for 3 | n). Thus, each term in the
product is just the probability that a prime p does not divide both m and
n. Multiplying over all primes p gives us the probability that m,n have no
common factors, i.e. that m and n are relatively prime, or ged(m,n) = 1.


http://mathworld.wolfram.com/RiemannZetaFunctionZeta2.html

