Analyse I Résumé: Suites de nombres réels

Définitions et résultats.

- 1. Une suite (a_n) de nombres réels est une application $a : \mathbb{N} \to \mathbb{R}$ définie pour tout nombre naturel.
- 2. Une suite (a_n) est majorée (resp. minorée) s'il existe $M \in \mathbb{R}$ tel que $a_n \leq M$ pour tout $n \in \mathbb{N}$ (resp. s'il existe $m \in \mathbb{R}$ tel que $a_n \geq m$ pour tout $n \in \mathbb{N}$).
- 3. Une suite (a_n) est croissante (resp. décroissante), si $a_{n+1} \ge a_n$ (resp. $a_{n+1} \le a_n$).
- 4. On dit que la suite (a_n) est convergente et admet pour limite le nombre $l \in \mathbb{R}$, si pour tout $\varepsilon > 0$ il existe $n_0 \in \mathbb{N}$ tel que pour tout nombre naturel $n \geq n_0$, on a $|a_n l| \leq \varepsilon$.
- 5. Si la suite est convergente, alors sa limite est unique.
- 6. Toute suite convergente est bornée.
- 7. Soient (a_n) et (b_n) deux suites convergentes. Alors $\lim_{n\to\infty} (pa_n+qb_n) = p \lim_{n\to\infty} a_n + q \lim_{n\to\infty} b_n \text{ pour tout } p, q \in \mathbb{R}.$ $\lim_{n\to\infty} (a_n \cdot b_n) = \left(\lim_{n\to\infty} a_n\right) \left(\lim_{n\to\infty} b_n\right).$ $\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n} \text{ si } b_n \neq 0 \text{ pour tout } n \in \mathbb{N} \text{ et } \lim_{n\to\infty} b_n \neq 0.$
- 8. Théorème des 2 gendarmes (pour les suites): Soient $(a_n), (b_n), (c_n), n \in \mathbb{N}$, trois suites telles que (1) il existe $k \in \mathbb{N}$ tel que $\forall n \geq k, a_n \leq b_n \leq c_n$ et (2) $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = l \in \mathbb{R}$. Alors la suite (b_n) converge et $\lim_{n \to \infty} b_n = l$.
- 9. Si $\lim_{n\to\infty} a_n = l \in \mathbb{R}$, alors $\lim_{n\to\infty} |a_n| = |l|$.
- 10. Si $\lim_{n\to\infty} |a_n| = 0$, alors $\lim_{n\to\infty} a_n = 0$.
- 11. Critère de d'Alembert pour les suites: Soit (a_n) une suite telle que $a_n \neq 0 \ \forall n \in \mathbb{N}$ et $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho \in \mathbb{R}^+$. Alors si $\rho < 1$ la suite (a_n) converge vers 0, et si $\rho > 1$, la suite (a_n) diverge. Si $\rho = 1$, le critère ne donne pas d'information sur la convergence de (a_n) .
- 12. Toute suite croissante et majorée (resp. décroissante et minorée) converge.
- 13. On dit que (a_n) tend vers $+\infty$ (resp. $-\infty$) si pour tout A > 0 il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \in \mathbb{N}, n \geq n_0, a_n \geq A$ (resp. $a_n \leq -A$). On écrit $\lim_{n \to \infty} a_n = \infty$ (resp. $\lim_{n \to \infty} a_n = -\infty$).

- 14. Toute suite croissante qui n'est pas majorée (resp. décroissante qui n'est pas minorée) tend vers $+\infty$ (resp. $-\infty$).
- 15. Soit $a_0 \in \mathbb{R}$ et $a_{n+1} = g(a_n)$ où $g(x) : \mathbb{R} \to \mathbb{R}$ est une application. Alors (a_n) est une suite définie par récurrence.
- 16. Si $a_0 \in \mathbb{R}$ et $a_{n+1} = g(a_n)$ est une suite définie par récurrence, telle que g(x) = qx + b, $q \neq 1$, est une fonction linéaire, alors:

Si |q| < 1, la suite (a_n) converge vers la limite $l = \frac{b}{1-a}$

Si |q| > 1 et $a_0 \neq \frac{b}{1-q}$, la suite (a_n) diverge.

- 17. Si (x_n) et (b_n) sont deux suites telles que $0 < b_n < \rho < 1$ pour tout $n \in \mathbb{N}$ et il existe $l \in \mathbb{R}$ tel que $|x_{n+1} l| \le b_n |x_n l|$ pour tout $n \in \mathbb{N}$, alors la suite (x_n) converge vers l.
- 18. Si $a_0 \in E \subset \mathbb{R}$ et $a_{n+1} = g(a_n)$ est la suite définie par récurrence, et $g: E \to E$, $E \subset \mathbb{R}$ est croissante et bornée, alors la suite (a_n) converge.
- 19. Une sous-suite d'une suite (a_n) est une suite $k \to a_{n_k}$, où $k \to n_k$ est une suite strictement croissante d'entiers naturels.
- 20. Si $\lim_{n\to\infty} a_n = l$, alors toute sous-suite de (a_n) converge aussi vers l.
- 21. Il existe une sous-suite convergente dans toute suite bornée (Bolzano Weierstrass).
- 22. On dit que (a_n) est une suite de Cauchy si pour tout $\varepsilon > 0$ il existe $n_0 \in \mathbb{N}$ tel que pour tout couple d'entiers naturels $n, m \ge n_0$, on a $|a_n a_m| \le \varepsilon$.
- 23. Une suite est convergente si et seulement si elle est une suite de Cauchy.
- 24. Soit (x_n) une suite bornée, est soit $y_n = \sup\{x_k, k \geq n\}$ et $z_n = \inf\{x_k, k \geq n\}$. Alors la suite (y_n) est décroissante et bornée, et la suite (z_n) est croissante et bornée. On définit la limite supérieure et la limite inférieure de (x_n) :

$$\lim_{n \to \infty} \sup x_n = \lim_{n \to \infty} y_n, \qquad \lim_{n \to \infty} \inf x_n = \lim_{n \to \infty} z_n.$$

25. Une suite bornée (x_n) converge vers $l \in \mathbb{R}$ si et seulement si $\lim_{n \to \infty} \sup x_n = \lim_{n \to \infty} \inf x_n = l$.

2

Calcul des limites.

1. Soient $x_n = a_p n^p + \ldots + a_0$ et $y_n = b^q n^q + \ldots + b_0$ deux suite polynômiales telles que $a_p > 0, b_q > 0$. Alors:

$$\lim_{n \to \infty} \left(\frac{x_n}{y_n} \right) = 0, \quad \text{si} \quad p < q$$

$$\lim_{n \to \infty} \left(\frac{x_n}{y_n} \right) = \frac{a_p}{b_q}, \quad \text{si} \quad p = q$$

$$\lim_{n \to \infty} \left(\frac{x_n}{y_n} \right) = \infty, \quad \text{si} \quad p > q$$

- 2. La suite géométrique (a_0r^n) , $a_0, r \in \mathbb{R}$, converge vers la limite $\lim_{n\to\infty} a_0r^n = 0$, si |r| < 1, et diverge si |r| > 1.
- 3. $\lim_{n\to\infty} \sqrt[n]{a} = 1$ pour tout a > 0.
- 4. $\lim_{n \to \infty} \frac{1}{n^p} = 0 \text{ pour tout } p > 0.$
- 5. $1 \le \sqrt{1+x} \le 1 + \frac{1}{2}x$ pour tout $x \ge 0$.
- 6. $1 + x \le \sqrt{1 + x} \le 1 + \frac{1}{2}x$ pour tout $-1 \le x \le 0$.
- 7. $\sin(x) < x$ pour tout x > 0.
- 8. $\sqrt{1-x^2} \le \frac{\sin x}{x} \le 1$ pour tout $0 < x \le 1$.

9.
$$\lim_{n \to \infty} \frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}} = 1.$$

$$10. \lim_{n \to \infty} \sqrt{1 - \left(\frac{1}{n}\right)^2} = 1.$$

- 11. $\lim_{n \to \infty} \frac{p^n}{n!} = 0 \text{ pour tout } p > 0.$
- 12. $\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e.$
- 13. $\lim_{n \to \infty} \left(1 \frac{1}{n} \right)^n = e^{-1}$.
- $14. \lim_{n \to \infty} \frac{n!}{n^n} = 0.$
- 15. $\lim_{n \to \infty} \sqrt[n]{n} = 1.$
- 16. $\lim_{n\to\infty} \frac{n^k}{p^n} = 0$ pour tout $k \in \mathbb{N}, p > 1$.