Analyse I Résumé: Séries numériques

Définitions et résultats.

- 1. Une série $\sum_{n=0}^{\infty} a_n$ de nombres réels est un couple: la suite $(a_n)_{n\in\mathbb{N}}$, et la suite des sommes partielles $(S_n = \sum_{k=0}^n a_k)$.
- 2. On dit que la série $\sum_{n=0}^{\infty} a_n$ est convergente si la suite des sommes partielles (S_n) est convergente. La limite de la suite des sommes partielles s'appelle la somme de la série.

$$\lim_{n \to \infty} S_n = S \qquad \iff \qquad \sum_{n=0}^{\infty} a_n = S.$$

- 3. Une série $\sum_{n=0}^{\infty} a_n$ est absolument convergente si la série $\sum_{n=0}^{\infty} |a_n|$ est convergente.
- 4. Une série qui est absolument convergente, est convergente.
- 5. (Condition nécessaire). Si la série $\sum_{n=0}^{\infty} a_n$ converge, alors $\lim_{n\to\infty} a_n = 0$.
- 6. (Critère de Leibniz pour les séries alternées). Soit (a_n) une suite telle que
 - (i) il existe $p \in \mathbb{N}$ tel que pour tout $n \geq p$, $|a_{n+1}| \leq |a_n|$ (suite $(|a_n|)$ est décroissante)
 - (ii) pour tout $n \ge p$, on a $a_{n+1} \cdot a_n \le 0$; (suite (a_n) est alternée)
 - (iii) $\lim_{n \to \infty} a_n = 0.$

Alors la série $\sum_{n=0}^{\infty} a_n$ est convergente.

- 7. (Critère de comparaison). Soient (a_n) et (b_n) deux suites telles que il existe $k \in \mathbb{N}$ tel que
 - pour tout $n \geq k$, on a $0 \leq a_n \leq b_n$ Alors: Si la série $\sum_{n=0}^{\infty} b_n$ est convergente, la série $\sum_{n=0}^{\infty} a_n$ est aussi convergente. Si la série $\sum_{n=0}^{\infty} a_n$ est divergente, la série $\sum_{n=0}^{\infty} b_n$ est aussi divergente.
- 8. Si une série de termes positifs est telle que la suite des sommes partielles est bornée, alors la série est convergente.
- 9. (Critère de d'Alembert). Soit (a_n) une suite telle que $a_n \neq 0$ pour tout $n \in \mathbb{N}$ et

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho.$$

Alors si $\rho < 1$, la série $\sum_{n=0}^{\infty} a_n$ est absolument convergente, et si $\rho > 1$, elle est divergente. Si $\rho = 1$, pas de conclusion.

10. (Critère de la racine (de Cauchy)). Soit (a_n) une suite telle que

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \rho.$$

Alors si $\rho < 1$, la série $\sum_{n=0}^{\infty} a_n$ est absolument convergente, et si $\rho > 1$, elle est divergente. Si $\rho = 1$, pas de conclusion.

11. (Critère de condensation). Soit $\sum_{n=1}^{\infty} a_n$ une série à termes positifs et décroissantes: $\forall n \in \mathbb{N}^+, a_n > 0$ et $a_{n+1} \leq a_n$. Alors les séries $\sum_{n=1}^{\infty} a_n$ et $\sum_{n=1}^{\infty} 2^n a_{2^n}$ convergent ou divergent en même temps.

Séries numériques remarquables.

- 1. Série géométrique: $\sum_{n=0}^{\infty} r^n$ est convergente vers la somme $\frac{1}{1-r}$ si |r|<1, et divergente si $|r|\geq 1$.
- 2. Série harmonique $\sum_{n=0}^{\infty} \frac{1}{n}$ est divergente.
- 3. Série harmonique alternée $\sum_{n=0}^{\infty} \frac{(-1)^n}{n}$ est convergente.
- 4. Série $\sum_{n=1}^{\infty} \frac{1}{n^p}$ est convergente pour tout p > 1 et divergente pour tout $p \le 1$.
- 5. Série $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converge absolument pour tout $x \in \mathbb{R}$.
- 6. Série $\sum_{n=1}^{\infty} \frac{c^n n!}{n^n}$ converge absolument si |c| < e et diverge autrement.
- 7. Série $\sum_{n=0}^{\infty} \frac{(n!)^2}{n^n}$ diverge.
- 8. Série $\sum_{n=0}^{\infty} n^p q^n$ où p > 0 converge absolument si |q| < 1 et diverge autrement.
- 9. Série $\sum_{n=0}^{\infty} \frac{n^p}{n!}$ converge absolument pour tout $p \in R$.