Analyse I – Série de révision Questions Ouvertes

Question 1. (6 pts)

- i) (1 pt) Donner la définition d'une fonction dérivable en un point.
- ii) (2 pts) Démontrer, en utilisant la définition donnée en i), que la fonction

$$f(x) = \begin{cases} \sqrt{1-x}, & x \le 1\\ \sqrt{x-1}, & x > 1 \end{cases}$$

n'est pas dérivable en x = 1. Justifier toutes les étapes de votre argument.

iii) (3 pts) Trouver toutes les valeurs de $m \in \mathbb{Q}, m \neq 0$, telles que la fonction

$$f(x) = \begin{cases} (1-x)^m, & x \le 1\\ (x-1)^m, & x > 1 \end{cases}$$

soit dérivable en x = 1.

Question 2. (5 pts)

Soit (a_n) , $n \in \mathbb{N}^*$ une suite de nombres naturels telle que :

$$a_1 = 2$$
, $a_2 = 3$, $a_{n+2} = 3a_{n+1} - 2a_n \quad \forall n \in \mathbb{N}^*$.

Démontrer que pour tout $n \in \mathbb{N}^*$ on a $a_n = 2^{n-1} + 1$.

Justifier toutes les étapes de votre argument.

Question 3. (6 pts) Soit $(x_n)_{n>0}$ la suite de Fibonacci:

$$x_0 = x_1 = 1$$
, $x_{n+2} = x_n + x_{n+1}$.

Démontrer que

- i) (3 pts) $x_n \ge n$ pour tout $n \in \mathbb{N}$ (par récurrence)
- *ii*) (3 pts) $\lim_{n \to \infty} \frac{x_n}{x_{n-1}} = \frac{1+\sqrt{5}}{2}$

Justifier toutes les étapes de votre argument.

Question 4. (6 pts) Soit $f: [-2,2] \rightarrow [-1,1]$ une fonction continue.

- i) (2 pts) Démontrer que l'équation 2f(x) = x possède au moins une solution sur [-2, 2]. Justifier toutes les étapes de votre argument.
- ii) (2 pts) Démontrer que l'équation $f \circ f(x) = x$ possède au moins une solution sur [-2, 2]. Justifier toutes les étapes de votre argument.

iii) (2 pts) Pour tout $k \in \mathbb{N}^*$ donner un example d'une fonction continue $f_k : [-2,2] \to [-1,1]$ telle que $2f_k(x) \neq x$ pour tout $x \in [-2,2-\frac{1}{k}]$.

Question 5. (5 pts) Soit $f: \mathbb{R} \to \mathbb{R}$ donnée par la formule

$$f(x) = (x^2 - 4x + 6)e^x - 2x.$$

i) (3 pts) Démontrer, en utilisant un résultat du cours, que pour tout $a < b, a, b \in [-2, 1]$, on a

$$f(b) - f(a) \le (e-2)(b-a).$$

Justifier toutes les étapes de votre argument.

ii) (2 pts) Démontrer, en utilisant un résultat du cours, que pour tout $a < b, a, b \in [-2, 1]$, on a

$$f(b) - f(a) > 2(a - b).$$

Justifier toutes les étapes de votre argument.

Question 6. (9 pts) Soit $\sum_{n=1}^{\infty} a_n$ une série convergente.

i) (2 pts) Démontrer que

$$\lim_{n \to \infty} \frac{\sin(a_n)}{a_n} = 1.$$

Justifier toutes les étapes de votre argument.

- ii) (3 pts) Est-ce que la série $\sum_{n=1} a_n^2$ est nécessairement convergente? Si oui, justifiez votre réponse. Si non, donnez un contre-exemple.
- iii) (4 pts) Donner un exemple d'une suite $(b_n)_{n\geq 2}$ de nombres réels positifs, telle que $\lim_{n\to\infty} b_n = 0$, mais la série $\sum_{n=2}^{\infty} (b_n)^p$ est divergente pour tout $p\in\mathbb{N}$.

Question 7. (2 pts)

Donner un exemple d'un nombre complexe z tel que les deux conditions sont simultanément satisfaites:

- $i) \operatorname{Im}(z) \neq 0,$
- ii) $e^z \in \mathbb{R}$.

Question 8. (2 pts)

Donner un exemple d'une suite des nombres réels $(a_n)_{n\in\mathbb{N}}$ telle que les trois conditions sont simultanément satisfaites:

- i) la suite (a_n) est bornée,
- ii) la suite (a_n) est divergente,
- *iii*) $a_n > 0$ pour tout $n \in \mathbb{N}$.

Question 9. (1 pt)

Donner un exemple de fonction continue $f:]1, +\infty[\to \mathbb{R}$ qui a une asymptote verticale, mais pas d'asymptote horizontale. La réponse doit être une expression.

Question 10. (1 pt)

Donner un exemple de fonction continue $f:]0,1] \to \mathbb{R}$ telle que l'intégrale généralisée $\int_{0+}^{1} f(x) dx$ est divergente. La réponse doit être une expression.

Question 11. (8pts)

Soit $f: \mathbb{R} \to \mathbb{R}$ donnée par la formule $f(x) = \sqrt{1 + 2\cos^2(x)}$.

- i) (2 pt) La fonction f est-elle périodique? Si oui, trouver la plus petite période de f.
- ii) (2 pt) Calculer la dérivée f'(x) et trouver son domaine de définition.
- iii) (4pts) Trouver les points critiques de f(x) dans \mathbb{R} et determiner leur nature. Justifier votre réponse.

Question 12. (2pts) Soient $a < b \in \mathbb{R}$ et $c < d \in \mathbb{R}$. Soit $f : [a, b] \to [c, d]$ une fonction bijective et continue. Quelles sont les valeurs possibles de $f(a) \in [c, d]$? Justifier votre réponse.

Question 13. (6pts)

Soit $f: \mathbb{R} \to \mathbb{R}$ donnée par la formule $f(x) = \sqrt{1 + 2\cos^2(x)}$.

- i) (2 pt) Trouver le plus grand intervalle $[a,b] \subset \mathbb{R}$ tel que $\frac{\pi}{4} \in [a,b]$ et $f:[a,b] \to \mathbb{R}$ est injective.
- ii) (2 pt) Soit [a,b] l'intervalle trouvé dans la partie 1 de cette question. Trouver la fonction réciproque f^{-1} de f(x) sur [a,b] et son domaine de définition.
- iii) (2 pt) Soit $f^{-1}(x)$ la fonction réciproque de $f:[a,b]\to\mathbb{R}$ trouvée dans la partie 2 de cette question. Trouver t dans le domaine de définition de f^{-1} tel que

3

$$(f^{-1})'(t) = \frac{1}{f'(\frac{\pi}{4})}.$$

Question 14. (7pts)

Soit la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = (x+1)^2 e^x$.

- i) Trouver tous les points d'extremums locaux de f et déterminer leur nature.
- ii) Déterminer les intervalles de monotonicité de f.
- iii) Trouver tous les points d'inflextion de f.
- iv) Déterminer les intervalles de convexité de f.
- v) Déterminer l'ensemble image de f.

Justifier vos réponses.

Question 15. (7pts)

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe $C^2(\mathbb{R})$.

- i) Citer le théorème des accroissements finis.
- ii) Supposons que $|f'(x)| \le 1$ pour tout $x \in \mathbb{R}$. Démontrer, en utilisant le théorème des accroissements finis, que $|f(b) f(a)| \le |b a|$ pour tout $a, b \in \mathbb{R}$, tels que a < b.
- iii) Supposons que f(0) = 0, f(5) = 1 et f(10) = 2. Démontrer qu'il existe un point $c \in]0, 10[$ tel que f''(c) = 0. Montrer toutes les étapes de votre raisonnement.