

Ens: A. Lachowska Analyse I - (n/a) 15 janvier 2024 3h30

SCIPER: 999999

Attendez le début de l'épreuve avant de tourner la page. Ce document est imprimé recto-verso, il contient 16 pages, les dernières pouvant être vides. Ne pas dégrafer.

- Posez votre carte d'étudiant sur la table.
- Aucun document n'est autorisé.
- L'utilisation d'une calculatrice et de tout outil électronique est interdite pendant l'épreuve.
- Pour les questions à **choix multiple**, on comptera:
 - +3 points si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - -1 point si la réponse est incorrecte.
- Pour les questions de type **vrai-faux**, on comptera:
 - +1 point si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - -1 point si la réponse est incorrecte.
- Utilisez un **stylo** à encre **noire ou bleu foncé** et effacez proprement avec du **correcteur blanc** si nécessaire.
- Si une question est erronée, l'enseignant se réserve le droit de l'annuler.

Respectez les consignes suivantes Read these guidelines Beachten Sie bitte die unten stehenden Richtlinien											
choisir une rép Antv	ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen						Corriger une réponse Correct an answer Antwort korrigieren				
X	\checkmark										
		ce qu'il ne f	aut <u>PAS</u> fa	ire wha	at should <u>I</u>	NOT be d	one wa	s man <u>N</u> I	ICHT tun sollte		
						•					

Première partie, questions à choix multiple

Pour chaque question marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'une seule réponse correcte par question.

Question [SCQ-induction-A]: Soit $f:[0,\pi]\to\mathbb{R}$ la fonction définie par

$$f(x) = (x+1)\sin(x) + \cos(x) + e^{\sin(x)}$$
.

Alors, l'ensemble image de f est

 $[0, 1 + \frac{\pi}{2} + e]$ [0, 2]

Question [SCQ-inf-sup-C] : Soit $(a_n)_{n\geq 1}$ la suite définie par $a_n=(-1)^n+\frac{1}{n}$, et soit A= $\{a_1, a_2, a_3, \dots\}$. Alors:

 \prod inf A=0 et sup $A=\frac{3}{2}$

inf A = -1 et sup $A = \frac{3}{2}$

Question [SCQ-complexes-B] : Une des solutions de l'équation $z^5 = \left(1 + \sqrt{3}\,\mathrm{i}\right)^2$ est

 $z = \sqrt[5]{4} \left(\cos \left(\frac{2\pi}{15} \right) + i \sin \left(\frac{2\pi}{15} \right) \right)$

 $z = \sqrt[5]{2} \left(\cos \left(\frac{16\pi}{15} \right) + i \sin \left(\frac{16\pi}{15} \right) \right)$

Question [SCQ-suites-convergence-B]: Soit $(x_n)_{n\geq 1}$ la suite définie par

$$x_n = \left(\cos\left(\sqrt{\frac{2}{n}}\right)\right)^n.$$

Alors la limite $\lim_{n\to\infty} x_n$ vaut

] 0

1

e

Question [SCQ-suites-recurrence-B]: Soit $(u_n)_{n\geq 0}$ la suite définie par $u_0=1$ et, pour $n\geq 1$, $u_n = -\frac{2}{3}u_{n-1} + 2$. Alors:

 $\lim_{n \to \infty} u_n = \frac{6}{5}$

 $\lim_{n \to \infty} u_n = +\infty$

 $\lim_{n \to \infty} u_n = 2$

Question [SCQ-serie-A]: Soit, pour $k \in \mathbb{N}^*$, $a_k = (-1)^k \frac{k+2}{k^3}$ et soit $s_n = \sum_{k=1}^n a_k$. Alors:

- \blacksquare la série $\sum_{k=1}^{\infty} a_k$ converge absolument
- \square la série $\sum_{k=1}^{\infty} a_k$ converge, mais ne converge pas absolument

Question [SCQ-limsup-liminf-B]: Soit $(a_n)_{n>1}$ la suite définie par

$$a_n = (-1)^{n+1} + \left(-\frac{1}{2}\right)^n + \frac{3}{n}.$$

Alors:

- $\lim_{n \to \infty} \liminf_{n \to \infty} a_n = -1 \text{ et } \limsup_{n \to \infty} a_n = 1$ $\lim_{n \to \infty} \inf_{n \to \infty} a_n = -1 \text{ et } \limsup_{n \to \infty} a_n = \frac{3}{2}$

Question [SCQ-parametre-A]: Soit la série avec paramètre $x \in [0,1] \cup [1,+\infty[$ définie par

$$\sum_{n=1}^{\infty} \frac{1}{(\ln(x))^n} \, .$$

Alors la série converge si et seulement si

 $x \in \frac{1}{e}, 1 \cup 1, e$

 $x \in [e, +\infty[$

 $x \in \left[0, \frac{1}{e}\right]$

 $x \in \left]0, \frac{1}{e}\right[\cup \left]e, +\infty\right[$

Question [SCQ-limit-prolongmt-B]: Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) = \begin{cases} |4 - x^2| & \text{si } x \le 0, \\ 4|x^2 - 1| & \text{si } x > 0. \end{cases}$$

Alors:

f est continue sur \mathbb{R}

- f n'est pas continue en x=-2
- f n'est pas continue en x=0
- f n'est pas continue en x = 1

Question [SCQ-val-intermed-image-interv-B une fonction, et $Im(f)$ l'ensemble image de f . Papour tous les choix possibles de I et de f ?	
\square Si I est borné et si $\mathrm{Im}(f)$ est borné, alors f	r est continue sur I .
$\hfill \Box$ Si I est borné et si $\mathrm{Im}(f)$ est fermé et si f	est continue sur I , alors I est fermé.
Si I est fermé et borné et si $\text{Im}(f)$ est ouve	ert, alors f n'est pas continue sur I .
\square Si I est fermé et borné et si $\mathrm{Im}(f)$ est ferm	é, alors f est continue sur I .
Question [SCQ-cont-vs-derivab-C]: Soit $f: \mathbb{R}^n$	$\mathbb{R} o \mathbb{R}$ la fonction définie par
$f(x) = \begin{cases} \frac{\sin(x)}{ x } \\ 1 \end{cases}$	$\frac{x}{x} \text{si } x \neq 0,$ $\text{si } x = 0.$
Alors:	
f est dérivable à droite en $x=0$	
$\lim_{x\to 0} f(x)$ existe mais f n'est pas continue en	n x = 0
f est dérivable en x = 0	
$\ \ \ \ \ \ \ \ \ \ \ \ \ $	x = 0
Question [SCQ-contin-deriv-C1-B]: Soit $f: \mathbb{R}$	$\mathbb{R} o \mathbb{R}$ la fonction définie par
$f(x) = \begin{cases} \frac{e^x - 1}{x} \\ 1 \end{cases}$	$ \frac{1}{x} \text{si } x \neq 0, $ $ \text{si } x = 0. $
Alors:	
$f'(0) = \frac{1}{2}$	
	f'(0) = e
Question [SCQ-theo-accr-finis-A] : Soit f : Alors:	$\mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = 2^x + x^2$.
il existe $c \in]2,3[$ tel que $f'(c)=9$	\Box il existe $c \in]3,4[$ tel que $f'(c)=9$
il existe $c \in]0,1[$ tel que $f'(c) = 9$	il existe $c \in]1, 2[$ tel que $f'(c) = 9$
Question [SCQ-dev-limite-A] : Soit $f: \mathbb{R} \to$ développement limité d'ordre 3 de f autour de x	
$f(x) = 1 + x + x^2 + \frac{2}{3}x^3 + x^3\varepsilon(x)$	$ f(x) = 1 - x + \frac{1}{3}x^3 + x^3\varepsilon(x) $
$ f(x) = 1 + x - \frac{1}{3}x^3 + x^3\varepsilon(x) $	$ f(x) = 1 - x + x^2 - \frac{2}{3}x^3 + x^3\varepsilon(x) $

Question [SCQ-serie-entiere-B]: L'intervalle de convergence de la série entière

$$\sum_{n=0}^{\infty} \frac{4^n}{n+1} (x-1)^n$$

est

 $\left[\frac{3}{4}, \frac{5}{4}\right]$

Question [SCQ-integrale-first-B] : L'intégrale généralisée $\int_{-\infty}^{\infty} \frac{e^x}{1+e^{2x}} \, \mathrm{d}x$ vaut

Question [SCQ-integrale-second-A] : L'intégrale $\int_0^\pi e^x \cos(2x) \, \mathrm{d}x$ vaut

 $\frac{1}{5}(e^{\pi}-1) \qquad \qquad \boxed{ } 0$

Question [SCQ-int-generalisee-B]: L'intégrale $\int_0^2 \frac{1}{x^2+3x+2} \, \mathrm{d}x$ vaut

 $\blacksquare \ln \left(\frac{3}{2}\right)$

 $\square \ln (6)$ $\square \ln \left(\frac{4}{3}\right)$ $\square \ln \left(\frac{3}{8}\right)$

Deuxième partie, questions du type Vrai ou Faux

Pour chaque question, marquer (sans faire de ratures) la case VRAI si l'affirmation est **toujours vraie** ou la case FAUX si elle **n'est pas toujours vraie** (c'est-à-dire si elle est parfois fausse).

Question [TF-inf-sup-A]: Soient A et B deux sous-ensembles bornés non-vides de \mathbb{R} . Si inf $A > \sup B$, alors $A \cap B$ est vide.

VRAI FAUX

Question [TF-complexes-B]: Soient $z_1, z_2 \in \mathbb{C}$ tels que $\operatorname{Re}(z_1 \cdot z_2) = 0$. Alors $\operatorname{Re}(z_1) \cdot \operatorname{Re}(z_2) = 0$.

VRAI FAUX

Question [TF-induction-suites-limites-B]: Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction telle que $\lim_{x \to +\infty} f(x) = +\infty$ et soit $(a_n)_{n \geq 0}$ la suite définie par $a_0 = 1$ et, pour $n \geq 1$, $a_n = f(a_{n-1})$. Alors $\lim_{n \to \infty} a_n = +\infty$.

VRAI FAUX

Question [TF-serie-B]: Soit $(a_n)_{n\geq 1}$ une suite de nombres strictement négatifs. Alors, la série $\sum_{n=1}^{\infty} a_n$ converge absolument si et seulement si elle converge.

VRAI FAUX

Question [TF-fonction-etc-B]: Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction strictement monotone. Alors f est surjective.

VRAI FAUX

Question [TF-limite-continuite-A]: Soit $f:]0,1[\to \mathbb{R}$ une fonction continue. Si $\lim_{x \to 0^+} f(x) = 0$ et $\lim_{x \to 1^-} f(x) = 0$, alors f est bornée.

VRAI FAUX

Question [TF-limites-continuite-B]: Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction telle que la limite de la suite $\left(f(\frac{1}{n})\right)_{n\geq 1}$ vaut f(0). Alors f est continue en $x_0=0$.

VRAI FAUX

Question [TF-serie-entiere-A]: Si la série entière $\sum_{k=0}^{\infty} a_k (x-5)^k$ converge pour $x=2$, alors
elle converge pour $x = 6$.
■ VRAI ☐ FAUX
Question [TF-dev-limite-B]: Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction avec le développement limité d'ordre 2 autour de $x_0 = 0$ donné par $f(x) = a + bx + cx^2 + x^2 \varepsilon(x)$, où $a, b, c \in \mathbb{R}$. Si f est dérivable en $x_0 = 0$, alors $f'(0) = b$.
■ VRAI □ FAUX
Question [TF-integrale-A]: La fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(t) = \int_0^t x dx$ est dérivable en $t = 0$.
VRAI FAUX