

Ens: S. Friedli Analyse I - (n/a) 17 janvier 2022 3 heures

SCIPER: 999999

Attendez le début de l'épreuve avant de tourner la page. Ce document est imprimé recto-verso, il contient 12 pages (les dernières pouvant être vides), et 33 questions. Ne pas dégrafer.

- Posez votre carte d'étudiant sur la table.
- Aucun document n'est autorisé.
- L'utilisation d'une **calculatrice** et de tout outil électronique est interdite pendant l'épreuve.
- Pour les questions à choix multiple, on comptera:
 - +3 points si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - -1 point si la réponse est incorrecte.
- Pour les questions de type **vrai-faux**, on comptera:
 - +1 point si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - -1 point si la réponse est incorrecte.
- Utilisez un **stylo** à encre **noire ou bleu foncé** et effacez proprement avec du **correcteur blanc** si nécessaire.
- Si une question est erronée, l'enseignant se réserve le droit de l'annuler.

Respectez les consignes suivantes Read these guidelines Beachten Sie bitte die unten stehenden Richtlinien					
choisir une réponse select an answer Antwort auswählen					
ce qu'il ne faut <u>PAS</u> faire what should <u>NOT</u> be done was man <u>NICHT</u> tun sollte					

Première partie, questions à choix multiple

Pour chaque question marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'une seule réponse correcte par question.

Question [QCM-complexes-B] : Soit $z = \frac{2i^9 - 4i^{15}}{1 - i}$. Alors:

$$z^6 = 8 \cdot 3^6 i$$
 $z^6 = 8 \cdot 3^6 i$

Question [QCM-cont-vs-derivab-A]: Soit la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = 2x + \sin(x)$, et soit $f^{-1}: \mathbb{R} \to \mathbb{R}$ sa fonction réciproque. Alors au point $y_0 = f(\pi)$:

$$(f^{-1})'(y_0) = 1$$

$$\left[\int (f^{-1})'(y_0) = -\frac{1}{3} \right]$$

$$\int f^{-1}$$
 n'est pas dérivable

$$(f^{-1})'(y_0) = \frac{1}{2\pi - 1}$$

Question [QCM-contin-deriv-C1-B]: Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continûment dérivable sur \mathbb{R} , telle que $\forall x \neq 0$,

$$f'(x) = \frac{x \sin(x)}{\sqrt{x^2 + 1} - 1}.$$

Alors:

$$\lim_{h\to 0} \frac{f(h)-f(0)}{h} = 2$$

Question [QCM-dev-limite-A]: Soit $f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + x^3\varepsilon(x)$ le développement limité d'ordre trois de la fonction $f(x) = e^{\sin(x)}$ autour de $x_0 = 0$. Alors a_3 est égal à:

$$\square \frac{1}{6}$$

$$\square \frac{1}{2}$$

Question [QCM-dev-limite-B]: Le développement limité d'ordre deux de la fonction $f(x) = e^{\frac{1}{1-x}}$ autour de $x_0 = 0$ est:

$$f(x) = e + ex + \frac{3}{2}ex^2 + x^2\varepsilon(x)$$

$$f(x) = e + ex + 3ex^2 + x^2 \varepsilon(x)$$

$$f(x) = \frac{5}{2} + 2x + 4x^2 + x^2 \varepsilon(x)$$

Question [QCM-inf-sup-A]: Soit $A = \{y \in \mathbb{R} : \exists x \in \mathbb{R}^*_+ \text{ tel que } y = e^{-x}\}$. Alors

$$\operatorname{Sup} A = 1$$

 \square A n'est pas majoré

$$\prod$$
 Inf $A=1$

$$\square$$
 Sup $A = e$

Question [QCM-int-generalisee-B]: L'intégrale généralisée $\int_0^{1-} \frac{1}{1-x} dx$

$$\Box$$
 converge et vaut -1

Question [QCM-integrale-first-B] : L'intégrale $\int_{1}^{2} \frac{1}{x(x^{2}+3)} dx$ vaut: $\log(4) + \log(\frac{7}{2})$ $\frac{1}{3} \text{Log}(2) - \frac{1}{6} \text{Log}(\frac{7}{4})$ \square Log(2) + $\frac{1}{\sqrt{3}}$ Arctg(2) $\frac{1}{2}$ Log(2) $-\frac{1}{9}$ Log($\frac{7}{4}$) Question [QCM-integrale-second-B]: L'intégrale $\int_0^{\pi/2} e^{\sin(x)} \cos(x) dx$ vaut: e e - 1Question [QCM-limit-prolongmt-B]: Soit $a,b\in\mathbb{R}$ et $f\colon [0,+\infty[\to\mathbb{R}$ la fonction définie par $f(x) = \begin{cases} \frac{5x^2 - 10x - 15}{x^2 - x - 6} & \text{si } x > 3, \\ a & \text{si } x = 3, \\ bx^2 + 1 & \text{si } 0 \le x < 3 \end{cases}$ Alors f est continue sur $[0, +\infty[$ pour: $a = 4, b = \frac{1}{3}$ $a = 0, b = -\frac{1}{9}$ $a = 5, b = \frac{4}{9}$ a = 4, b = 3Question [QCM-limsup-liminf-B]: Soit $(a_n)_{n\geq 0}$ la suite définie par $a_n = \sqrt{n + (-1)^n} - \sqrt{n}.$ Alors: $\lim_{n \to +\infty} \inf a_n = 0, \text{ et } \limsup_{n \to +\infty} a_n = 0$ $\lim \inf_{n \to +\infty} a_n = -1, \text{ et } \limsup_{n \to +\infty} a_n = \sqrt{3} - \sqrt{2}$ $\lim \inf_{n \to +\infty} a_n = -1, \text{ et } \limsup_{n \to +\infty} a_n = 0$ $\liminf_{n \to +\infty} a_n = 0, \text{ et } \limsup_{n \to +\infty} a_n = +\infty$ Question [QCM-serie-A]: Soit $(a_n)_{n\geq 0}$ la suite de nombres réels définie par $a_n=\frac{(-2)^n(n!)^2}{(2n)!}$. Alors la série numérique $\sum_{n=0}^{\infty} a_n$ est: absolument convergente convergente mais pas absolument convergente divergente car $|a_n| \to +\infty$

divergente car $|a_n| \to 1$

Question [QCM-serie-entiere-B]: La série entière $\sum_{n=0}^{\infty} \frac{2^n}{3^{n+4}} (x+1)^n$ converge si et seulement si $x \in I$, où:

 $\blacksquare I = \left] - \frac{5}{2}, \frac{1}{2} \left[\qquad \qquad \square I = \left[-\frac{5}{3}, -\frac{1}{3} \right] \qquad \qquad \square I = \left[\frac{1}{3}, \frac{5}{3} \right]$

Question [QCM-serie-parametre-D-bis] : Soit $f:]-1,1[\to \mathbb{R}$ la fonction définie par f(t) = $\sum_{n=0}^{\infty} t^n$. Alors:

 $f'(\frac{1}{2}) = 3$

Question [QCM-suites-convergence-A]: Soit $(a_n)_{n\geq 1}$ la suite définie par $a_n=\mathrm{e}^{-n}\,\mathrm{e}^{n^2\,\mathrm{Log}\left(1+\frac{1}{n}\right)}$. Alors:

Question [QCM-suites-recurrence-A]: Soit $(x_n)_{n\geq 0}$ la suite définie par $x_0=3$ et, pour $n\geq 1$, $x_n = \frac{3}{4}x_{n-1} + 2$. Alors:

 $(x_n)_{n>0}$ diverge

Question [QCM-theo-accr-finis-B]: Soit I = [-3,0] et $f:I \to \mathbb{R}$ la fonction définie par $f(x) = 3e^{\frac{x+3}{3}} - 2$. Alors pour tout $x, y \in I$ tels que x < y on a:

 $1 \le \frac{f(y) - f(x)}{u - x} \le 3$

 $3 \le \frac{f(y) - f(x)}{y - x} \le 3e$

 $2 \le \frac{f(y) - f(x)}{y - x} \le e$

Question [QCM-val-intermed-image-interv-B]: Soit $f: [0, \frac{\pi}{2}] \to \mathbb{R}$ la fonction définie par $f(x) = e^x \cos(x)$. Alors l'ensemble image de f est égal à

 $\boxed{} [0,1]$

 $0, \exp\left(\frac{\pi}{4}\right)$

Deuxième partie, questions du type Vrai ou Faux

Pour chaque question, marquer (sans faire de ratures) la case VRAI si l'affirmation est **toujours vraie** ou la case FAUX si elle **n'est pas toujours vraie** (c'est-à-dire si elle est parfois fausse).

Question [TF-derivabilite-discussion-A]: Soit $f:[-1,1] \to \mathbb{R}$ une fonction continue telle que f(-1) = f(1). Alors il existe $x_0 \in]-1,1[$ tel que $f'(x_0) = 0$.

VRAI FAUX

Question [TF-dev-limite-A]: Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction infiniment dérivable, $n \in \mathbb{N}^*$, et $f(x) = p_n(x) + x^n \varepsilon(x)$ le développement limité de f d'ordre n autour de zéro, où $p_n(x) = a_0 + a_1 x + ... + a_n x^n$ est un polynôme. Alors

f'(0) = p'(0), $f^{(2)}(0) = p_n^{(2)}(0)$, $f^{(3)}(0) = p_n^{(3)}(0)$, ..., $f^{(n)}(0) = p_n^{(n)}(0)$ VRAI FAUX

Question [TF-fonction-etc-A]: Il existe une fonction bijective et continue $f:]-1, 1[\to \mathbb{R}.$

VRAI FAUX

Question [TF-induction-suites-limites-B]: Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue, et soit $(a_n)_{n\geq 1}$ la suite définie par $a_n = f\left(\frac{1}{n}\right)$. Alors $(a_n)_{n\geq 1}$ est une suite de Cauchy.

VRAI FAUX

Question [TF-inf-sup-B]: Soit $A \subset \mathbb{R}$ un ensemble non-vide, et soit $B = \{x \in \mathbb{R} : -x \in A\}$. Si A est majoré, alors B est majoré.

VRAI FAUX

Question [TF-integrale-B]: Soient $f, g: \mathbb{R} \to \mathbb{R}$ des fonctions continûment dérivables, $a, b \in \mathbb{R}$, a < b. Alors:

 $\int_{a}^{b} f(x)g'(x)dx = -\int_{a}^{b} f'(x)g(x)dx$

VRAI FAUX

Question [TF-limites-continuity] $\lim_{x\to 0^+} \sqrt{f(x)} = +\infty.$	nuite-A]: Il exis	te une fonction continue	$f: [0,1] \to \mathbb{R}^+$ telle que
	☐ VRAI	FAUX	
Question [TF-serie-A]: Soit série $\sum_{n=1}^{\infty} a_n$ converge.	$(a_n)_{n\geq 1}$ une suite	e de nombres réels telle q	ue $\lim_{n\to\infty} a_n = 0$. Alors la
	☐ VRAI	FAUX	
Question [TF-serie-B]: Soit Alors $\lim_{n\to\infty} na_n = 0$.	$(a_n)_{n\geq 1}$ une suite α	le nombres réels telle que	la série $\sum_{n=1}^{\infty} a_n$ converge
	☐ VRAI	FAUX	
Question [TF-serie-entiere-elle converge aussi pour $x = 3.1$	-B]: Si la série en	ntière $\sum_{k=0}^{\infty} a_k (x-3)^k$ conv	werge pour $x = 2.8$, alors
	VRAI	FAUX	