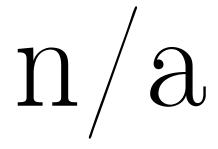


Ens: A. Lachowska Analyse I - (n/a) 11 janvier 2021 3 heures



n/a

SCIPER: 999999

Attendez le début de l'épreuve avant de tourner la page. Ce document est imprimé recto-verso, il contient 8 pages (les dernières pouvant être vides), et 34 questions. Ne pas dégrafer.

- Posez votre carte d'étudiant sur la table.
- Aucun document n'est autorisé.
- L'utilisation d'une **calculatrice** et de tout outil électronique est interdite pendant l'épreuve.
- Pour les questions à choix multiple, on comptera:
 - +3 points si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - -1 point si la réponse est incorrecte.
- Pour les questions de type vrai-faux, on comptera:
 - +1 point si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - -1 point si la réponse est incorrecte.
- Utilisez un **stylo** à encre **noire ou bleu foncé** et effacez proprement avec du **correcteur blanc** si nécessaire.
- Si une question est erronée, l'enseignant se réserve le droit de l'annuler.

Respectez les consignes suivantes Read these guidelines Beachten Sie bitte die unten stehenden Richtlinien					
choisir une réponse select an answer		Corriger une réponse Correct an answer Antwort korrigieren			
ce qu'il ne faut <u>PAS</u> faire what should <u>NOT</u> be done was man <u>NICHT</u> tun sollte					

Partie commune, 23 questions à choix multiple

Pour chaque question marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'**une seule** réponse correcte par question.

 $A = \{z \in \mathbb{C} : z^2 (|z| - 2) = 0\}, \qquad B = \{z \in \mathbb{C} : \operatorname{Re}(z) = 1\}.$

Question [QCM-complexes-A] : Soit le nombre complexe $z=1+\sqrt{3}$ i. Alors :

Question [QCM-complexes-B]: Soient les ensembles du plan complexe

Alors:	
$A \cap B$ contient deux points	
\square $A \cap B$ est l'ensemble vide	
\square $A \cap B$ contient exactement un point	
$\ \ \ \ \ \ \ \ \ \ \ \ \ $	
Question [QCM-contin-deriv-C1-B] : Soient a et b deux nombres réels tels que la fonction	
$f(x) = \begin{cases} ax + b & \text{si } x \le 0, \\ \frac{\sqrt{1+x} - 1}{x} & \text{si } x > 0, \end{cases}$	
st dérivable en $x = 0$. Alors :	
Question [QCM-contin-vs-derivab-A]: Soit $f\colon \mathbb{R} o \mathbb{R}$ la fonction définie par	
$f(x) = \begin{cases} 1 & \text{si } x \le 0, \\ \sqrt{1 - x^2} & \text{si } 0 < x \le 1, \\ 0 & \text{si } x > 1. \end{cases}$	
Alors:	
f est dérivable en $x = 0$ et continue en $x = 1$	
$\hfill \int f$ est dérivable à droite en $x=0$ et dérivable à gauche en $x=1$	
Question [QCM-derivee-B]: La dérivée de la fonction $f(x) = (1+x^2)^{1+x^2}$ au point $x=1$ gale à :	est

Question [QCM-dev-limite-A]: Soit $f:]-1,1[\to \mathbb{R}$ la fonction définie par $f(t) = \frac{1}{4+3t}$, et $t_0=0$. Alors le développement limité d'ordre deux de f autour de t_0 est donné par :

$$f(t) = \frac{1}{4} - \frac{3}{16}t + \frac{9}{64}t^2 + t^2\varepsilon(t)$$

$$f(t) = \frac{1}{4} - \frac{3}{16}t + \frac{9}{128}t^2 + t^2\varepsilon(t)$$

$$f(t) = \frac{1}{4} + \frac{3}{16}t - \frac{9}{64}t^2 + t^2\varepsilon(t)$$

$$f(t) = \frac{1}{4} - \frac{3}{16}t + \frac{9}{32}t^2 + t^2\varepsilon(t)$$

Question [QCM-dev-limite-B]: Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = \sin(\sin(x))$, et $x_0 = 0$. Alors le développement limité d'ordre cinq de f autour de x_0 est donné par :

$$f(x) = x - \frac{1}{3}x^3 + \frac{1}{10}x^5 + x^5\varepsilon(x)$$

$$f(x) = x - \frac{1}{3}x^3 + \frac{1}{120}x^5 + x^5\varepsilon(x)$$

Question [QCM-induction-B1]: Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = x^3$. Soit $f_1 = f$ et, pour tout $n \ge 2$, $f_n = f \circ f_{n-1}$. Alors pour tout $n \ge 1$:

$$f_n(x) = x^{(3^n)}$$

$$f_n(x) = x^{(3n)}$$

$$f_n(x) = nx^n$$

Question [QCM-inf-sup-B] : Soit A l'ensemble défini par $A = \{x \in \mathbb{R} : 0 < \text{Arctg}(\frac{1}{x}) < \frac{\pi}{4}\}.$ Alors:

Question [QCM-int-generalisee-B]: L'intégrale généralisée $\int_{1}^{2^{-}} \frac{x+1}{\sqrt{2-x}} dx$

converge et vaut
$$\frac{16}{3}$$

| | converge et vaut 4

$$\Box$$
 converge et vaut $\frac{8}{3}$

diverge

Question [QCM-integrale-second-A]: L'intégrale $\int_{-\pi}^{\pi} x \sin(x) dx$ vaut

$$2\pi$$

$$| -\pi$$

$$\frac{3\pi}{2}$$

0

Question [QCM-integrale-second-B]: L'intégrale $\int_0^1 x \sqrt{x^2 + 1} dx$ vaut

$$\frac{2\sqrt{2}-1}{3}$$

Question [QCM-limite-B]: Soit $(a_n)_{n\geq 0}$ la suite définie par $a_n = \frac{(n+3)^{1/2} - n^{1/2}}{(n+1)^{-1/2}}$. Alors:

$$\lim_{n\to\infty} a_n = \frac{3}{2}$$

Question [QCM-limite-prolongmt-A]: Soit f :] $\frac{\operatorname{Arctg}(x^2)}{x\sin(x)}$. Alors:	$]-\pi,\pi[\setminus\{0\}\to\mathbb{R}$ la fon	ction définie par $f(x) =$			
$\blacksquare f$ admet un prolongement par continuité en :	$x = 0$, noté \hat{f} , et $\hat{f}(0) =$: 1.			
f admet un prolongement par continuité en $x = 0$, noté \hat{f} , et $\hat{f}(0) = 1$.					
\Box f admet un prolongement par continuité en :					
\Box f n'admet pas de prolongement par continuir					
Question [QCM-limite-prolongmt-D]: Parmi le	es fonctions				
$f(x) = \begin{cases} \sqrt{ x } \sin(\frac{1}{x}) & \text{si } x \neq 0, \\ 1 & \text{si } x = 0, \end{cases}$	$g(x) = \begin{cases} \frac{1}{x} \operatorname{Arctg}(x) \\ 1 \end{cases}$	$si x \neq 0,$ $si x = 0,$			
lesquelles sont continues en $x = 0$?					
\Box f et g \Box f , mais pas g	$\blacksquare g$, mais pas f	\square ni f , ni g			
Question [QCM-minmax-A]: Pour toute fonction en $x=0$ un point de minimum local, on a :	$f \colon \mathbb{R} \to \mathbb{R}$ deux fois dé	rivable sur $\mathbb R$ qui adme			
$f'(0) = 0 \text{ et } f''(0) \ge 0$	$f'(0) = 0 \text{ et } f''(0) \neq 0$				
$f'(0) \neq 0 \text{ et } f''(0) \neq 0$	$f'(0) = 0 \text{ et } f''(0) \le 0$				
Question [QCM-serie-A]: Soit $(a_n)_{n\geq 1}$ la suite a_n	définie par $a_n = (-1)^n$ s	in $\left(\frac{1}{n^2}\right)$. Alors:			
		$\sum_{n=1}^{\infty} a_n \text{ diverge}$			
Question [QCM-serie-entiere-A] : L'interv $\sum_{n=0}^{\infty} \sqrt{n} (x+1)^n$ est donné par :	valle de convergence	I de la série entière			
		I =]-2,0[
Question [QCM-serie-parametre-B] : Soit la série avec paramètre $b \in \mathbb{R}$ définie par :					
$s = \sum_{k=1}^{\infty} \left(b \right)$	$0+rac{1}{k}igg)^k$				
Alors s converge pour tout :					
	b < 1	$b \le 1$			

CATALOGUE Question [QCM-suites-convergence-B]: Soit $(a_n)_{n\geq 1}$ la suite définie par $a_n=\frac{(5n+1)^n}{n^n5^n}$. Alors: $\lim_{n \to \infty} a_n = e^{\frac{1}{5}} \qquad \qquad \lim_{n \to \infty} a_n = 5 \qquad \qquad \lim_{n \to \infty} a_n = +\infty \qquad \qquad \lim_{n \to \infty} a_n = 0$ Question [QCM-suites-convergence-C]: Soit $c \in \mathbb{R}$, et $(a_n)_{n \geq 1}$ la suite définie par $a_n = \sum_{k=0}^n \frac{2^k}{k!}$ si n est pair, $a_n = \left(\sum_{k=0}^n \frac{1}{k!}\right)^c$ si n est impair. Alors: la suite $(a_n)_{n\geq 1}$ converge pour exactement une valeur de cla suite $(a_n)_{n\geq 1}$ diverge quelle que soit la valeur de c $\lim_{m \to \infty} a_{2m} = +\infty$ $\lim_{m \to \infty} a_{2m+1} = c$ **Question** [QCM-theo-accr-finis-B]: Pour toute function $f: [0,4] \to \mathbb{R}$, continue sur [0,4] et dérivable sur]0,4[, qui satisfait $f'(x) \geq 2$ pour tout $x \in]0,4[$, on a : f(4) - f(0) < 1 $f(4) - f(1) \le 4$ $f(2) - f(0) \ge 4$ 0 < f(3) - f(2) < 1Question [QCM-val-intermed-image-interv-B]: Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par f(x) = $x^2 \sin(x^2)$, et $I \subset \mathbb{R}$ son ensemble image, $I = \{ y \in \mathbb{R} : \exists x \in \mathbb{R} \text{ tel que } f(x) = y \}.$ Alors: $I=\mathbb{R}$

Partie commune, 11 questions du type Vrai ou Faux

Pour chaque question, marquer (sans faire de ratures) la case VRAI si l'affirmation est **toujours** vraie ou la case FAUX si elle n'est pas toujours vraie (c'est-à-dire si elle est parfois fausse).

Question [TF-complexes-A]: Pour tout $y \in \mathbb{R}$ donné, $y \neq 0$, l'équation $z^4 = iy$ possède exactement quatre racines distinctes dans \mathbb{C} .

VRAI FAUX

Question [TF-derivabilite-discussion-A]: Soient g et h deux fonctions dérivables sur]-1,1[, telles que g(0) = h(0) = 0, et $h'(x) \neq 0$ pour tout $x \in]-1,1[$. Si $\lim_{x \to 0} \frac{g'(x)}{h'(x)}$ n'existe pas, alors $\lim_{x \to 0} \frac{g(x)}{h(x)}$ n'existe pas.

VRAI FAUX

Question [TF-dev-limite-A]: Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction possédant un développement limité d'ordre deux autour de zéro, donné par $f(x) = a + bx + cx^2 + x^2 \varepsilon(x)$. Alors le développement limité d'ordre deux de $g(x) = f(x)^3$ autour de zéro est donné par $g(x) = a^3 + b^3x + c^3x^2 + x^2\varepsilon(x)$.

VRAI FAUX

Question [TF-fonction-etc-B]: Soit $f:]0,1[\to \mathbb{R}$ une fonction monotone, non-constante, et dérivable sur]0,1[. Alors soit $f'(x) \ge 0$ pour tout $x \in]0,1[$, soit $f'(x) \le 0$ pour tout $x \in]0,1[$.

VRAI FAUX

Question [TF-induction-suites-limites-B]: Soient $(a_n)_{n\geq 0}$ et $(b_n)_{n\geq 0}$ deux suites convergentes avec $b_n\neq 0$ pour tout $n\geq 0$. Alors la limite $\lim_{n\to\infty}\frac{a_n}{b_n}$ existe.

VRAI FAUX

Question [TF-inf-sup-A]: Soit $A \subset \mathbb{R}$. Si inf $A \in A$ et sup $A \in A$, alors A est un intervalle fermé.

VRAI FAUX

Question [TF-integrale-A]: Soient $(a_n)_{n\geq 1}$ une suite de nombres réels telle que $\lim_{n\to\infty} a_n = 1$, $f: \mathbb{R} \to \mathbb{R}$ une fonction continue, et $(b_n)_{n\geq 1}$ la suite définie par

$$b_n = \int_0^{a_n} f(x) \, \mathrm{d}x \,, \qquad n \ge 1 \,.$$

Alors $(b_n)_{n\geq 1}$ est une suite convergente.

VRAI FAUX

Question [TF-soussuite-A]: Soit une fonction $f: \mathbb{R} \to \mathbb{R}$. S'il existe $a \in \mathbb{R}$ tel que $\lim_{x \to a} f(x) = +\infty$, alors f n'est pas continue sur \mathbb{R} .

VRAI FAUX

Question [TF-serie-B]: Soit $f: \mathbb{N} \to \mathbb{R}$ une fonction telle que pour tout $n \ge 1$, f(n) > n. Alors la série $\sum_{n=1}^{\infty} \frac{1}{f(n)}$ converge.

VRAI FAUX

Question [TF-serie-entiere-A]: Soit $(a_k)_{k\geq 0}$ une suite de nombres réels telle que pour tout $k\geq 0,\ a_k\neq 0$, et telle que $\lim_{k\to\infty}\left|\frac{a_{k+1}}{a_k}\right|=0$. Alors la série entière $\sum_{k=0}^\infty a_k\,x^k$ converge pour tout $x\in\mathbb{R}$.

VRAI FAUX

Question [TF-soussuite-B]: Si $(x_n)_{n\geq 0}$ est une suite de nombres réels telle que $\lim_{n\to\infty} x_n = +\infty$, alors elle ne possède aucune sous-suite bornée.

VRAI FAUX