

Ens: S. Friedli Analyse I - XXX 15 janvier 2024 3h30 466

SCIPER: FAKE-9

Attendez le début de l'épreuve avant de tourner la page. Ce document est imprimé recto-verso, il contient 12 pages, les dernières pouvant être vides. Ne pas dégrafer.

- Posez votre carte d'étudiant sur la table.
- Aucun document n'est autorisé.
- L'utilisation d'une **calculatrice** et de tout outil électronique est interdite pendant l'épreuve.
- Pour les questions à **choix multiple**, on comptera:
 - +3 points si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - −1 point si la réponse est incorrecte.
- Pour les questions de type **vrai-faux**, on comptera:
 - +1 point si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - -1 point si la réponse est incorrecte.
- Utilisez un **stylo** à encre **noire ou bleu foncé** et effacez proprement avec du **correcteur blanc** si nécessaire.
- Si une question est erronée, l'enseignant se réserve le droit de l'annuler.

Respectez les consignes suivantes Read these guidelines Beachten Sie bitte die unten stehenden Richtlinien										
choisir une rép Antv	ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen						Corriger une réponse Correct an answer Antwort korrigieren			
X	\checkmark									
ce qu'il ne faut <u>PAS</u> faire what should <u>NOT</u> be done was man <u>NICHT</u> tun sollte										
				X		•				

Première partie, questions à choix multiple

Pour chaque question marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'une seule réponse correcte par question.

Question 1: Soit $(x_n)_{n\geq 1}$ la suite définie par

$$x_n = \left(\cos\left(\sqrt{\frac{2}{n}}\right)\right)^n.$$

Alors la limite $\lim_{n\to\infty} x_n$ vaut

0

Question 2 : Soit $(a_n)_{n\geq 1}$ la suite définie par

$$a_n = (-1)^{n+1} + \left(-\frac{1}{2}\right)^n + \frac{3}{n}.$$

Alors:

 $| \liminf_{n \to \infty} a_n = \frac{3}{4} \text{ et } \limsup_{n \to \infty} a_n = \frac{7}{2}$ $| \liminf_{n \to \infty} a_n = -1 \text{ et } \limsup_{n \to \infty} a_n = 1$

 $\lim \inf_{n \to \infty} a_n = -1 \text{ et } \lim \sup_{n \to \infty} a_n = \frac{3}{2}$ $\lim \inf_{n \to \infty} a_n = -\frac{1}{4} \text{ et } \lim \sup_{n \to \infty} a_n = \frac{3}{2}$

Question 3: L'intégrale généralisée $\int_{-\infty}^{\infty} \frac{e^x}{1 + e^{2x}} dx$ vaut

 \square $\arctan\left(\frac{1}{2}\right)$ \square $2\arctan(e)$

Question 4: Soit, pour $k \in \mathbb{N}^*$, $a_k = (-1)^k \frac{k+2}{k^3}$ et soit $s_n = \sum_{k=1}^n a_k$. Alors:

 \square la série $\sum_{k=1}^{\infty} a_k$ converge absolument

 \square la série $\sum_{k=1}^{\infty} a_k$ converge, mais ne converge pas absolument

 $\bigsqcup \lim_{n \to \infty} s_n = +\infty$

Question 5: L'intégrale $\int_0^2 \frac{1}{x^2 + 3x + 2} dx$ vaut

 $\log (6)$

Question 6: Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) = \begin{cases} \frac{e^x - 1}{x} & \text{si } x \neq 0, \\ 1 & \text{si } x = 0. \end{cases}$$

A 1	
Alore	•
TIOLS	•

 $\int f'(0) = 1$

 $\int f$ n'est pas dérivable en 0

f'(0) = e

 $\int f'(0) = \frac{1}{2}$

Question 7: L'intégrale $\int_0^{\pi} e^x \cos(2x) dx$ vaut

 $\frac{2}{5}(e^{\pi}-1)$

 $e^{\pi}-1$

 $\frac{1}{5}(e^{\pi}-1)$

Question 8 : L'intervalle de convergence de la série entière

$$\sum_{n=0}^{\infty} \frac{4^n}{n+1} (x-1)^n$$

est

 $\boxed{} \boxed{\frac{3}{4}, \frac{5}{4}}$

 $\left[\frac{3}{4}, \frac{5}{4} \right]$

 $\begin{bmatrix} \frac{1}{2}, \frac{3}{2} \end{bmatrix}$

 $\left[\frac{1}{2}, \frac{3}{2} \right]$

Question 9: Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = 2^x + x^2$. Alors :

il existe $c \in [3, 4]$ tel que f'(c) = 9

il existe $c \in [2, 3[$ tel que f'(c) = 9[

il existe $c \in [0,1[$ tel que f'(c) = 9

il existe $c \in [1, 2]$ tel que f'(c) = 9

Question 10 : Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) = \begin{cases} |4 - x^2| & \text{si } x \le 0, \\ 4|x^2 - 1| & \text{si } x > 0. \end{cases}$$

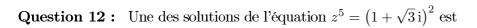
Alors:

 $\int f$ n'est pas continue en x=0

f est continue sur \mathbb{R}

f n'est pas continue en x=-2

f n'est pas continue en x = 1


Question 11: Soit $f:[0,\pi]\to\mathbb{R}$ la fonction définie par

$$f(x) = (x+1)\sin(x) + \cos(x) + e^{\sin(x)}$$
.

Alors, l'ensemble image de f est

 $[0,1+\frac{\pi}{2}+e]$ $[0,2+\pi+e]$ $[\pi-2,2]$

[0, 2]

Question 13: Soit la série avec paramètre $x \in]0,1[\cup]1,+\infty[$ définie par

$$\sum_{n=1}^{\infty} \frac{1}{(\log(x))^n} \, .$$

Alors la série converge si et seulement si

$$x \in [e, +\infty[$$

Question 14: Soit $(u_n)_{n\geq 0}$ la suite définie par $u_0=1$ et, pour $n\geq 1$, $u_n=-\frac{2}{3}u_{n-1}+2$. Alors :

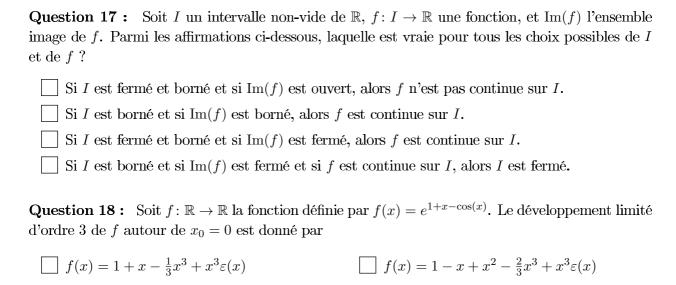
$$\lim u_n = \frac{6}{2}$$

Question 15: Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) = \begin{cases} \frac{\sin(x)}{|x|} & \text{si } x \neq 0, \\ 1 & \text{si } x = 0. \end{cases}$$

Alors:

f est continue sur \mathbb{R} , mais pas dérivable en x=0


f est dérivable en x=0

 $\lim_{x\to 0} f(x)$ existe mais f n'est pas continue en x=0

 $\int f$ est dérivable à droite en x=0

Question 16: Soit $(a_n)_{n\geq 1}$ la suite définie par $a_n=(-1)^n+\frac{1}{n}$, et soit $A=\{a_1,a_2,a_3,\dots\}$. Alors:

 $f(x) = 1 - x + \frac{1}{3}x^3 + x^3\varepsilon(x)$

 $f(x) = 1 + x + x^2 + \frac{2}{3}x^3 + x^3\varepsilon(x)$

Deuxième partie, questions du type Vrai ou Faux

Pour chaque question, marquer (sans faire de ratures) la case VRAI si l'affirmation est **toujours vraie** ou la case FAUX si elle **n'est pas toujours vraie** (c'est-à-dire si elle est parfois fausse).

Question 19 : Soient A et B deux sous-ensembles bornés non-vides de \mathbb{R} . Si inf $A > \sup B$, alors $A \cap B$ est vide.

☐ VRAI ☐ FAUX

Question 20 : Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction telle que la limite de la suite $(f(\frac{1}{n}))_{n\geq 1}$ vaut f(0). Alors f est continue en $x_0=0$.

☐ VRAI ☐ FAUX

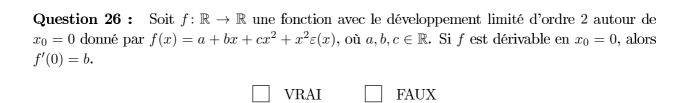
Question 21 : Si la série entière $\sum_{k=0}^{\infty} a_k (x-5)^k$ converge pour x=2, alors elle converge pour x=6.

VRAI FAUX

Question 22 : Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction strictement monotone. Alors f est surjective.

☐ VRAI ☐ FAUX

Question 23: Soient $z_1, z_2 \in \mathbb{C}$ tels que $\operatorname{Re}(z_1 \cdot z_2) = 0$. Alors $\operatorname{Re}(z_1) \cdot \operatorname{Re}(z_2) = 0$.


□ VRAI □ FAUX

Question 24 : Soit $(a_n)_{n\geq 1}$ une suite de nombres strictement négatifs. Alors, la série $\sum_{n=1}^{\infty} a_n$ converge absolument si et seulement si elle converge.

☐ VRAI ☐ FAUX

Question 25: Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction telle que $\lim_{x \to +\infty} f(x) = +\infty$ et soit $(a_n)_{n \ge 0}$ la suite définie par $a_0 = 1$ et, pour $n \ge 1$, $a_n = f(a_{n-1})$. Alors $\lim_{n \to \infty} a_n = +\infty$.

☐ VRAI ☐ FAUX

Question 27 : Soit $f:]0,1[\to \mathbb{R}$ une fonction continue. Si $\lim_{x\to 0^+} f(x) = 0$ et $\lim_{x\to 1^-} f(x) = 0$, alors f est bornée.

☐ VRAI ☐ FAUX

Question 28 : La fonction $f \colon \mathbb{R} \to \mathbb{R}$ définie par $f(t) = \int_0^t |x| \, \mathrm{d}x$ est dérivable en t = 0.

☐ VRAI ☐ FAUX