


Ens: D. Strütt Analyse I - (n/a) 16 janvier 2023 3h30





SCIPER: **999999** Signature:

Attendez le début de l'épreuve avant de tourner la page. Ce document est imprimé recto-verso, il contient 16 pages (les dernières pouvant être vides), et 31 questions. Ne pas dégrafer.

- Posez votre carte d'étudiant sur la table.
- Aucun document n'est autorisé.
- L'utilisation d'une **calculatrice** et de tout outil électronique est interdite pendant l'épreuve.
- Pour les questions à **choix multiple**, on comptera:
  - +3 points si la réponse est correcte,
  - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
  - -1 point si la réponse est incorrecte.
- Pour les questions de type **vrai-faux**, on comptera:
  - +1 point si la réponse est correcte,
    - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
  - -1 point si la réponse est incorrecte.
- Utilisez un **stylo** à encre **noire ou bleu foncé** et effacez proprement avec du **correcteur blanc** si nécessaire.
- Si une question est erronée, l'enseignant se réserve le droit de l'annuler.

| Respectez les consignes suiva                               | antes   Read these guidelines   Beachten Sie bitte                           | e die unten stehenden Richtlinien                               |  |  |
|-------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------|--|--|
| choisir une réponse   select an answer<br>Antwort auswählen | ne PAS choisir une réponse   NOT select an answer<br>NICHT Antwort auswählen | Corriger une réponse   Correct an answer<br>Antwort korrigieren |  |  |
|                                                             |                                                                              |                                                                 |  |  |
| ce qu'il ne t                                               | aut <u>PAS</u> faire   what should <u>NOT</u> be done   was man <u>N</u>     | ICHT tun sollte                                                 |  |  |
|                                                             |                                                                              |                                                                 |  |  |

## Première partie, questions à choix multiple

Pour chaque question marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'une seule réponse correcte par question.

**Question 1 :** Soit  $(a_n)_{n\geq 1}$  la suite définie par

$$a_n = (-1)^n \left(\frac{6n+8}{2n}\right) - 3 - \frac{4}{n}.$$

Alors:

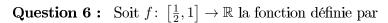
**Question 2 :** Soient  $A \subset \mathbb{R}$  et  $B \subset \mathbb{R}$  deux ensembles majorés. Alors :

**Question 3:** Soit  $f: \mathbb{R} \to \mathbb{R}$  la fonction définie par

$$f(x) = \begin{cases} |x| & \text{si } x \ge -1, \\ \frac{1}{2}(x^2 + 1) & \text{si } x < -1. \end{cases}$$

Alors:

- $\bigcap f$  est dérivable sur  $\mathbb{R}$
- $\int f$  est dérivable en x=0 et continue en x=-1
- $\int f$  est dérivable en x=-1 et continue en x=0
- $\int f$  n'est pas continue en x=-1


**Question 4:** Soit  $I = \left[0, \frac{\pi}{2}\right]$  et  $f: I \to \mathbb{R}$  la fonction définie par  $f(x) = \cos(2x)$ . Alors pour tous  $x, y \in I$  tels que x < y on a :

 $0 \le \frac{f(y) - f(x)}{y - x} \le 2$ 

Question 5: L'intégrale  $\int_0^1 \frac{2x-1}{(x-3)(x+2)} dx$  vaut

 $\sqrt{6} \arctan(\frac{1}{6})$ 

 $\bigcap$  Log(3) – Log(2)



$$f(x) = \frac{1}{x} + \frac{1}{\pi} \sin\left(\frac{\pi}{x}\right).$$

| Soit   | I 1'e           | nsemble     | image | de | f    | Alors |  |
|--------|-----------------|-------------|-------|----|------|-------|--|
| DOIL . | $\iota$ $\iota$ | TIPOTITINIC | mage  | uc | ./ • | TIOLS |  |

$$I = [2, 3]$$

Question 7: Soit  $\alpha \in \mathbb{R}$ . La série  $\sum_{n=1}^{\infty} \left(1 + \frac{\alpha}{n}\right)^{n^2}$  converge si et seulement si

$$-1 < \alpha < 0$$

$$\bigcap \alpha < -1$$

$$\alpha > 0$$

$$\alpha < 0$$

**Question 8 :** L'intégrale généralisée  $\int_{0+}^{1} \frac{\log(x)}{x^2} dx$ 

converge et vaut -1

| converge et vaut +1

converge et vaut -4

diverge

**Question 9 :** Les nombres complexes 3, 1-2i, et 1+2i sont les racines du polynôme

 $z^3 - 5z^2 + 11z - 15$ 

 $\int z^3 - 2iz^2 + 45$ 

 $\int z^3 + 14z^2 + 15$ 

Question 10: Soit, pour  $a_0 \in \mathbb{R}$ , la suite  $(a_n)_{n \geq 0}$  définie pour  $n \geq 1$  par  $a_n = \frac{1}{2}a_{n-1} + \frac{1}{2}$ .

- Si  $a_0 = 0$ , la suite est convergente.
- Si  $a_0 > 1$ , la suite est croissante.
- Si  $a_0 < 1$ , la suite est décroissante.
- Si  $a_0 < 0$ ,  $\lim_{n \to \infty} a_n = -\infty$ .

**Question 11 :** Soit  $a_n = 1$  si n est pair et  $a_n = 0$  si n est impair. Le rayon de convergence R de la série entière  $\sum_{n=1} a_n x^n$ 

- vaut  $\frac{1}{2}$
- est infini
- vaut 1
- vaut 0

Question 12 : Soit  $(a_n)_{n\geq 1}$  la suite définie par  $a_n=(3n+1)^{\operatorname{Log}\left(\frac{1}{\sqrt{n}}\right)}$ . Alors :

 $\lim_{n \to \infty} a_n = 1$ 

 $\lim_{n \to \infty} a_n = 0$ 

 $\lim_{n \to \infty} a_n = 3$ 

## Question 13:

Soit  $f: \mathbb{R} \to \mathbb{R}$  la fonction définie par

$$f(x) = \begin{cases} e^{-2/|x|} & \text{si } x \neq 0, \\ 0 & \text{si } x = 0. \end{cases}$$

Alors:

|   |   |   | l f | est | continue | mais | pas | dérivable | e en  | x | = |
|---|---|---|-----|-----|----------|------|-----|-----------|-------|---|---|
| 1 | П | ı | l J | est | continue | mais | pas | derivable | en en | а | c |

 $\int f$  est dérivable en x=0

 $\lim_{x\to 0} f(x)$  n'existe pas

 $\lim_{x\to 0} f(x)$  existe mais f n'est pas continue en x=0

**Question 14:** Soit  $f: \mathbb{R} \to \mathbb{R}$  la fonction définie par  $f(x) = e^x \operatorname{Log}(1+x)$ . Le développement limité d'ordre 3 de f autour de  $x_0 = 0$  est donné par

$$f(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + o(|x|^3)$$

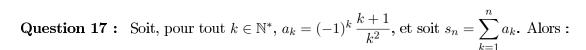
$$f(x) = x - \frac{x^2}{3} + \frac{x^3}{2} + o(|x|^3)$$

$$f(x) = x + \frac{x^2}{2} + \frac{x^3}{2} + o(|x|^3)$$

Question 15 : Soit la suite  $(a_n)_{n\geq 0}$  définie par  $a_0=\frac{3}{2}$ , et pour  $n\geq 1$  par  $a_n=3-\frac{2}{a_{n-1}}$ . Alors :

la limite  $\lim_{n\to\infty} a_n$  n'existe pas dans  $\mathbb R$ 

$$\Box$$
  $\lim a_n = 4$ 


**Question 16:** Soient  $a, b \in \mathbb{R}$  et  $f: \mathbb{R} \to \mathbb{R}$  la fonction définie par

$$f(x) = \begin{cases} \frac{\sqrt{2}}{2} & \text{si } x \le 0, \\ \sin(ax+b) & \text{si } x > 0. \end{cases}$$

Alors f est continue sur  $\mathbb{R}$  pour :

$$a = -\frac{\pi}{4}$$
 et  $b = 0$ 

$$a=0 \text{ et } b=-\frac{\pi}{4}$$



- $\hfill \square$  la série  $\sum_{k=1}^\infty a_k$  converge, mais ne converge pas absolument

- $\square$  la série  $\sum_{k=1}^{\infty} a_k$  converge absolument

Question 18: L'intégrale  $\int_0^1 x^2 e^{-x} dx$  vaut

## Deuxième partie, questions du type Vrai ou Faux

Pour chaque question, marquer (sans faire de ratures) la case VRAI si l'affirmation est **toujours vraie** ou la case FAUX si elle **n'est pas toujours vraie** (c'est-à-dire si elle est parfois fausse).

Question 19: Soit  $(a_n)_{n\geq 0}$  une suite de nombres réels non-nuls telle que  $\lim_{n\to\infty} a_n = 2$ . Alors  $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1$ .

VRAI FAUX

**Question 20 :** Soit  $f: \mathbb{R} \to \mathbb{R}$  une fonction bijective et croissante. Alors la fonction réciproque  $f^{-1}: \mathbb{R} \to \mathbb{R}$  est croissante.

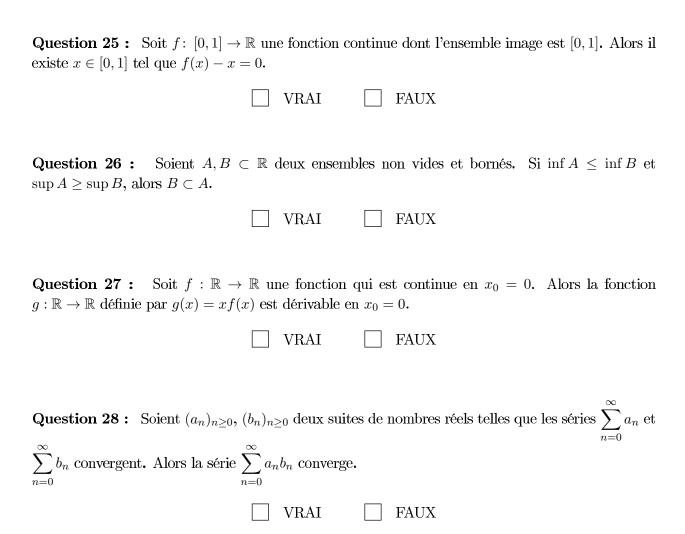
☐ VRAI ☐ FAUX

Question 21 : L'intégrale  $\int_{-1}^{1} e^{-\sin(x)} dx$  vaut zéro.

☐ VRAI ☐ FAUX

**Question 22 :** Soit  $f \in C^{\infty}(\mathbb{R})$ . Alors pour tout point  $x_0 \in \mathbb{R}$  et pour tout  $n \in \mathbb{N}^*$ , f possède un développement limité d'ordre n autour de  $x_0$ .

□ VRAI □ FAUX


**Question 23**: Soit  $f \in C^{1}(\mathbb{R})$ . Alors il existe des nombres  $a, b \in \mathbb{R}$  tels que

$$\lim_{x \to 0} \frac{f(x) - a - bx}{x} = 0$$

☐ VRAI ☐ FAUX

Question 24 : Si  $z \in \mathbb{C}$  est tel que |z|=1, alors  $z^5+\frac{1}{z^5}$  est un nombre réel.

☐ VRAI ☐ FAUX

