

Ens: S. Friedli Analyse I - XYZ 17 janvier 2022 3 heures 1

## Lennon John

SCIPER: XXXXX1

Attendez le début de l'épreuve avant de tourner la page. Ce document est imprimé recto-verso, il contient 12 pages (les dernières pouvant être vides), et 33 questions. Ne pas dégrafer.

- Posez votre carte d'étudiant sur la table.
- Aucun document n'est autorisé.
- L'utilisation d'une calculatrice et de tout outil électronique est interdite pendant l'épreuve.
- Pour les questions à choix multiple, on comptera:
  - +3 points si la réponse est correcte,
    - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
  - -1 point si la réponse est incorrecte.
- Pour les questions de type vrai-faux, on comptera:
  - +1 point si la réponse est correcte,
    - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
  - -1 point si la réponse est incorrecte.
- Utilisez un **stylo** à encre **noire ou bleu foncé** et effacez proprement avec du **correcteur blanc** si nécessaire.
- Si une question est erronée, l'enseignant se réserve le droit de l'annuler.

| Respectez les consignes suivantes   Read these guidelines   Beachten Sie bitte die unten stehenden Richtlinien |                                                                              |                                                                 |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------|
| choisir une réponse   select an answer<br>Antwort auswählen                                                    | ne PAS choisir une réponse   NOT select an answer<br>NICHT Antwort auswählen | Corriger une réponse   Correct an answer<br>Antwort korrigieren |
|                                                                                                                |                                                                              |                                                                 |
| ce qu'il ne faut <u>PAS</u> faire   what should <u>NOT</u> be done   was man <u>NICHT</u> tun sollte           |                                                                              |                                                                 |
|                                                                                                                |                                                                              |                                                                 |

## Première partie, questions à choix multiple

Pour chaque question marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'**une seule** réponse correcte par question.

**Question 1:** L'intégrale généralisée  $\int_0^{1-} \frac{1}{1-x} dx$ 

diverge

converge et vaut 0

converge et vaut -1

converge et vaut 1

**Question 2:** Soit la fonction  $f: \mathbb{R} \to \mathbb{R}$  définie par  $f(x) = 2x + \sin(x)$ , et soit  $f^{-1}: \mathbb{R} \to \mathbb{R}$  sa fonction réciproque. Alors au point  $y_0 = f(\pi)$ :

 $\left[ \left( f^{-1} \right)' (y_0) \right] = -\frac{1}{3}$ 

 $(f^{-1})'(y_0) = 1$ 

 $\int f^{-1}$  n'est pas dérivable

Question 3 : Soit  $(a_n)_{n\geq 0}$  la suite de nombres réels définie par  $a_n = \frac{(-2)^n (n!)^2}{(2n)!}$ . Alors la série

numérique  $\sum_{n=0}^{\infty} a_n$  est:

- convergente mais pas absolument convergente
- divergente car  $|a_n| \to +\infty$
- absolument convergente
- divergente car  $|a_n| \to 1$

Question 4 : La série entière  $\sum_{n=0}^{\infty} \frac{2^n}{3^{n+4}} (x+1)^n$  converge si et seulement si  $x \in I$ , où:

**Question 5 :** Soit I = [-3, 0] et  $f: I \to \mathbb{R}$  la fonction définie par  $f(x) = 3e^{\frac{x+3}{3}} - 2$ . Alors pour tout  $x, y \in I$  tels que x < y on a:

 $3 \le \frac{f(y) - f(x)}{y - x} \le 3e$ 

 $2 \le \frac{f(y) - f(x)}{y - x} \le e$ 

**Question 6:** Soit  $a, b \in \mathbb{R}$  et  $f: [0, +\infty[ \to \mathbb{R}$  la fonction définie par

$$f(x) = \begin{cases} \frac{5x^2 - 10x - 15}{x^2 - x - 6} & \text{si } x > 3, \\ a & \text{si } x = 3, \\ bx^2 + 1 & \text{si } 0 \le x < 3. \end{cases}$$

Alors f est continue sur  $[0, +\infty[$  pour:

$$a = 5, b = \frac{4}{9}$$
  $a = 0, b = -\frac{1}{9}$   $a = 4, b = 3$   $a = 4, b = \frac{1}{3}$ 

Question 7: L'intégrale  $\int_1^2 \frac{1}{x(x^2+3)} dx$  vaut:

**Question 8 :** Soit  $f: [0, \frac{\pi}{2}] \to \mathbb{R}$  la fonction définie par  $f(x) = e^x \cos(x)$ . Alors l'ensemble image de f est égal à

**Question 9:** Soit  $f: \mathbb{R} \to \mathbb{R}$  une fonction continûment dérivable sur  $\mathbb{R}$ , telle que  $\forall x \neq 0$ ,

$$f'(x) = \frac{x \sin(x)}{\sqrt{x^2 + 1} - 1}.$$

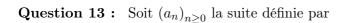
Alors:

**Question 10:** Soit  $z = \frac{2i^9 - 4i^{15}}{1 - i}$ . Alors:

Question 11 : Soit  $(a_n)_{n\geq 1}$  la suite définie par  $a_n = e^{-n} e^{n^2 \operatorname{Log}\left(1+\frac{1}{n}\right)}$ . Alors:

**Question 12 :** Soit  $f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + x^3 \varepsilon(x)$  le développement limité d'ordre trois de la fonction  $f(x) = e^{\sin(x)}$  autour de  $x_0 = 0$ . Alors  $a_3$  est égal à:

 $\square$  1  $\square$  0  $\square$   $\frac{1}{2}$   $\square$   $\frac{1}{6}$ 



$$a_n = \sqrt{n + (-1)^n} - \sqrt{n}.$$

Alors:

**Question 14:** Soit  $f: ]-1,1[ \to \mathbb{R}$  la fonction définie par  $f(t) = \sum_{n=0}^{\infty} t^n$ . Alors:

$$\int f'(\frac{1}{2}) = 0$$

$$\int f'(\frac{1}{2}) = 3$$

$$f'(\frac{1}{2}) = 7$$

Question 15 : Le développement limité d'ordre deux de la fonction  $f(x) = e^{\frac{1}{1-x}}$  autour de  $x_0 = 0$ est:

$$f(x) = e + ex + 3ex^2 + x^2 \varepsilon(x)$$

$$f(x) = e + ex + \frac{3}{2}ex^{2} + x^{2}\varepsilon(x)$$

$$\int f(x) = \frac{5}{2} + 2x + 3cx + x^2 \varepsilon(x)$$

$$f(x) = \frac{5}{2} + 2x + 4x^2 + x^2 \varepsilon(x)$$

Question 16: L'intégrale  $\int_0^{\pi/2} e^{\sin(x)} \cos(x) dx$  vaut:

$$\Box$$
 0

$$\Box$$
 1

$$e-1$$

**Question 17:** Soit  $A = \{y \in \mathbb{R} : \exists x \in \mathbb{R}_+^* \text{ tel que } y = e^{-x} \}$ . Alors

$$\square$$
 Sup  $A = 1$ 

A n'est pas majoré

$$\square$$
 Sup  $A = e$ 

$$\prod$$
 Inf  $A=1$ 

**Question 18 :** Soit  $(x_n)_{n\geq 0}$  la suite définie par  $x_0=3$  et, pour  $n\geq 1, x_n=\frac{3}{4}x_{n-1}+2$ . Alors:

$$(x_n)_{n\geq 0}$$
 diverge

## Deuxième partie, questions du type Vrai ou Faux

Pour chaque question, marquer (sans faire de ratures) la case VRAI si l'affirmation est **toujours vraie** ou la case FAUX si elle **n'est pas toujours vraie** (c'est-à-dire si elle est parfois fausse).

**Question 19:** Il existe une fonction bijective et continue  $f: ]-1,1[ \to \mathbb{R}.$ 

☐ VRAI ☐ FAUX

**Question 20 :** Soit  $A \subset \mathbb{R}$  un ensemble non-vide, et soit  $B = \{x \in \mathbb{R} : -x \in A\}$ . Si A est majoré, alors B est majoré.

☐ VRAI ☐ FAUX

Question 21 : Si la série entière  $\sum_{k=0}^{\infty} a_k (x-3)^k$  converge pour x=2.8, alors elle converge aussi pour x=3.1.

☐ VRAI ☐ FAUX

Question 22 : Soit  $(a_n)_{n\geq 1}$  une suite de nombres réels telle que  $\lim_{n\to\infty}a_n=0$ . Alors la série  $\sum_{n=1}^{\infty}a_n$  converge.

☐ VRAI ☐ FAUX

Question 23 : Soit  $(a_n)_{n\geq 1}$  une suite de nombres réels telle que la série  $\sum_{n=1}^{\infty} a_n$  converge. Alors  $\lim_{n\to\infty} na_n = 0$ .

VRAI FAUX

**Question 24 :** Soit  $f: \mathbb{R} \to \mathbb{R}$  une fonction infiniment dérivable,  $n \in \mathbb{N}^*$ , et  $f(x) = p_n(x) + x^n \varepsilon(x)$  le développement limité de f d'ordre n autour de zéro, où  $p_n(x) = a_0 + a_1x + ... + a_nx^n$  est un polynôme. Alors

$$f'(0) = p'(0), \quad f^{(2)}(0) = p_n^{(2)}(0), \quad f^{(3)}(0) = p_n^{(3)}(0), \quad \dots \quad , \quad f^{(n)}(0) = p_n^{(n)}(0)$$

VRAI FAUX

Question 25 : Soient  $f, g: \mathbb{R} \to \mathbb{R}$  des fonctions continûment dérivables,  $a, b \in \mathbb{R}$ , a < b. Alors:

$$\int_{a}^{b} f(x)g'(x)dx = -\int_{a}^{b} f'(x)g(x)dx$$

☐ VRAI ☐ FAUX

**Question 26:** Soit  $f: [-1,1] \to \mathbb{R}$  une fonction continue telle que f(-1) = f(1). Alors il existe  $x_0 \in ]-1,1[$  tel que  $f'(x_0) = 0$ .

☐ VRAI ☐ FAUX

Question 27: Il existe une fonction continue  $f: [0,1] \to \mathbb{R}^+$  telle que  $\lim_{x \to 0^+} \sqrt{f(x)} = +\infty$ .

☐ VRAI ☐ FAUX

**Question 28:** Soit  $f: \mathbb{R} \to \mathbb{R}$  une fonction continue, et soit  $(a_n)_{n\geq 1}$  la suite définie par  $a_n = f\left(\frac{1}{n}\right)$ . Alors  $(a_n)_{n\geq 1}$  est une suite de Cauchy.

☐ VRAI ☐ FAUX