Analyse I

Résumé: Limite d'une fonction. Fonctions continues

Définitions et résultats.

- 1. Une fonction $f: E \to F$ est définie au voisinage de $x_0 \in \mathbb{R}$ s'il existe un nombre réel $\delta > 0$ tel que $]x_0 \delta, x_0 + \delta[\setminus \{x_0\} \subset E]$.
- 2. (Limite d'une fonction, déf.1). Une fonction $f: E \to F$ définie au voisinage de x_0 (mais pas nécessairement en x_0), admet pour limite le nombre réel l lorsque x tend vers x_0 , si pour tout $\varepsilon > 0$ il existe $\delta > 0$ tel que pour tout $x \in \{x \in E, 0 < |x x_0| \le \delta\}$, on a

$$|f(x) - l| \le \varepsilon.$$

Notation: $\lim_{x \to x_0} f(x) = l$.

- 3. (Limite d'une fonction, déf.2). Une fonction $f: E \to F$ définie au voisinage de x_0 (mais pas nécessairement en x_0), admet pour limite le nombre réel l lorsque x tend vers x_0 , si pour toute suite (a_n) d'éléments de $\{x \in E, x \neq x_0\}$ qui converge vers x_0 , la suite $f(a_n)$ converge vers l.
- 4. Les définitions déf.1 et déf.2 sont équivalentes.
- 5. Si pour toute suite $(a_n) \in \{x \in E, x \neq x_0\}$, convergente vers x_0 , la limite de la suite $f(a_n)$ existe, alors la limite de la fonction $f: E \to F$ lorsque x tend vers x_0 existe.
- 6. Si elle existe, la limite d'une fonction en un point est unique.
- 7. (Critère de Cauchy pour les limites des fonctions). La limite $\lim_{x\to x_0} f(x)$ existe si est seulement si la fonction f est définie au voisinage de x_0 et pour tout $\varepsilon > 0$ il existe $\delta > 0$ tel que pour tout couple

$$x_1, x_2 \in \{x \in E, \ 0 < |x - x_0| \le \delta\}, \text{ on a } |f(x_1) - f(x_2)| \le \varepsilon.$$

- 8. (Opérations algébriques sur les limites). Si $f: E \to \mathbb{R}$ et $g: E \to \mathbb{R}$ sont deux fonctions telles que $\lim_{x \to x_0} f(x) = l_1 \in \mathbb{R}$ and $\lim_{x \to x_0} g(x) = l_2 \in \mathbb{R}$, alors
 - (a) $\lim_{x \to x_0} (\alpha f(x) + \beta g(x)) = \alpha l_1 + \beta l_2$ pour tout couple $\alpha, \beta \in \mathbb{R}$.
 - (b) $\lim_{x \to x_0} (f(x)g(x)) = l_1 \cdot l_2$
 - (c) $\lim_{x \to x_0} \left(\frac{f(x)}{g(x)} \right) = \frac{l_1}{l_2} \text{ si } l_2 \neq 0.$
- 9. (Théorème de deux gendarmes pour les fonctions). Soient $f, g, h : E \to F$ trois fonctions telles que
 - (a) $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = l$

(b) il existe $\alpha > 0$ tel que pour tout $x \in \{x \in E, \ 0 < |x - x_0| \le \alpha\}$, on a $f(x) \le h(x) \le g(x)$.

Alors $\lim_{x \to x_0} h(x) = l$.

- 10. (Limite de la composée de deux fonctions). Soit $f: E \to F$ et $g: G \to H$ deux fonctions telles que $f(E) \subset G$ et $\lim_{x \to x_0} f(x) = y_0$, $\lim_{y \to y_0} g(y) = l$. Supposons aussi qu'il existe $\alpha > 0$ tel que $0 < |x x_0| \le \alpha$ implique $f(x) \ne y_0$. Alors $\lim_{x \to x_0} (g \circ f)(x) = l$.
- 11. (Limite à gauche, limite à droite). Une fonction $f: E \to F$ définie à droite (resp. à gauche) de x_0 admet pour limite à droite (resp. à gauche) au point x_0 le nombre réel l si pour tout $\varepsilon > 0$ il existe $\delta > 0$ tel que pour tout $x \in E$, $0 < x x_0 \le \delta$ (resp. $0 < x_0 x \le \delta$), on a $|f(x) l| \le \varepsilon$. Notation: $\lim_{x \to x_0^+} f(x) = l$ (resp. $\lim_{x \to x_0^-} f(x) = l$).
- 12. Une fonction $f: E \to F$ est dite continue en un point $x_0 \in E$ si $\lim_{x \to x_0} f(x) = f(x_0)$.
- 13. (Critère de Cauchy pour les fonctions continues). La fonction $f: E \to F$ est continue en $x_0 \in E$ si et seulement si pour tout $\varepsilon > 0$ il existe $\delta > 0$ tel que pour tout couple $x_1, x_2 \in \{x \in E, |x x_0| \le \delta\}$, on a $|f(x_1) f(x_2)| \le \varepsilon$.
- 14. (Opérations algébriques sur les fonctions continues). Si $f: E \to \mathbb{R}$ et $g: E \to \mathbb{R}$ sont deux fonctions continues en x_0 , alors
 - (a) la fonction $\alpha f(x) + \beta g(x)$ est continue en x_0 pour tout couple $\alpha, \beta \in \mathbb{R}$.
 - (b) la fonction f(x)g(x) est continue en x_0 .
 - (c) la fonction $\frac{f(x)}{g(x)}$ est continue en x_0 si $g(x_0) \neq 0$.
- 15. Si $f: E \to F$ est continue en $x_0 \in E$ et $g: G \to H$ est continue en $f(x_0) \in f(E) \subset G$, alors la fonction $(g \circ f)(x): E \to H$ est continue en x_0 .
- 16. (Prolongement par continuité). Soit $f: E \to F$ une fonction telle que $c \notin E$ et la limite $\lim_{x \to c} f(x) = l \in \mathbb{R}$ existe. Alors la fonction $\hat{f}_c: E \cup \{c\} \to \mathbb{R}$ définie par

$$\hat{f}_c(x) = \begin{cases} f(x), & x \in E \\ l, & x = c \end{cases}$$

est appelée le prolongement par continuité de la fonction f au point c. Un tel prolongement est unique et la fonction obtenue est continue en c.

- 17. Soit $f:[a,b]\to F$ une fonction continue sur un intervalle fermé borné non-vide [a,b]. Alors f atteint son supremum et son infimum sur [a,b]. Autrement dit, si $f:[a,b]\to F$ est continue sur [a,b], alors $\max_{x\in[a,b]}f(x)$ et $\min_{x\in[a,b]}f(x)$ existent.
- 18. (Théorème de la valeur intermédiaire). Une fonction continue sur un intervalle fermé borné non-vide atteint son supremum, son infimum et toute valeur comprise entre les deux. Autrement dit, si $f:[a,b] \to \mathbb{R}$ est continue sur [a,b], alors

$$f([a,b]) = [\min_{x \in [a,b]} f(x), \max_{x \in [a,b]} f(x)].$$

- 19. (Corollaire) Soit a < b et $f : [a, b] \to \mathbb{R}$ continue sur [a, b] et telle que $f(a) \cdot f(b) \le 0$. Alors il existe $c \in [a, b]$ tel que f(c) = 0.
- 20. L'image d'un intervalle ouvert par une fonction continue strictement monotone est un intervalle ouvert.
- 21. Toute fonction strictement monotone sur un intervalle quelconque est injective.
- 22. Toute fonction injective et continue sur un intervalle quelconque est strictement monotone.
- 23. Toute fonction bijective et continue sur un intervalle quelconque admet une fonction réciproque qui est continue et strictement monotone.

Calcul des limites.

- 1. $\lim_{x \to x_0} x^p = x_0^p$ pour tout $p \in \mathbb{N}^*, x_0 \in \mathbb{R}$.
- 2. Pour tout polynôme f(x) et tout $x_0 \in \mathbb{R}$, on a $\lim_{x \to x_0} f(x) = f(x_0)$. Les polynômes sont continus sur \mathbb{R} .
- 3. Pour toute fonction rationnelle f(x) et tout $x_0 \in \mathbb{R}$ tel que x_0 n'est pas la racine du dénominateur de f(x), on a $\lim_{x\to x_0} f(x) = f(x_0)$. Toute fonction rationnelle est continue sur son domaine de définition.
- 4. $\lim_{x\to x_0} \sin(x) = \sin(x_0)$ et $\lim_{x\to x_0} \cos(x) = \cos(x_0)$ pour tout $x_0 \in \mathbb{R}$. Les fonctions $\sin(x)$ et $\cos(x)$ sont continues sur \mathbb{R} .
- $5. \lim_{x \to 0} \frac{\sin(x)}{x} = 1.$
- 6. $\lim_{x \to x_0} \sqrt[n]{x} = \sqrt[n]{x_0}$ pour tout $n \in \mathbb{N}^*$ et tout $x_0 \in \mathbb{R}_+^*$. La fonction $\sqrt[n]{x}$ est continue sur \mathbb{R}_+^* pour tout $n \in \mathbb{N}^*$.
- 7. $\lim_{x \to \pm \infty} \frac{1}{x^p} = 0 \text{ pour tout } p > 0.$
- 8. $\lim_{x\to 0^+} \frac{1}{x} = \infty$, $\lim_{x\to 0^-} \frac{1}{x} = -\infty$.
- $9. \lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0.$
- 10. $\lim_{x \to 0} \frac{e^x 1}{x} = 1.$
- 11. $\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1.$
- 12. $\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$.