Analyse I – Exercices à rendre

Exercice 1.

Montrez par récurrence que pour tout $n \in \mathbb{N}$, on a $\sum_{j=1}^{n+1} j \, 2^j = n \, 2^{n+2} + 2$.

Solution

On veut montrer par récurrence que pour tout $n \in \mathbb{N}$, la proposition P(n) suivante est vraie:

$$\sum_{j=1}^{n+1} j \, 2^j = n \, 2^{n+2} + 2.$$

L'initiation: Soit n = 0. On a bien

$$\sum_{j=1}^{1} j2^{j} = 1 \cdot 2^{1} = 0 + 2.$$

L'hérédité:

Supposons que $\sum_{j=1}^{n+1} j 2^j = n 2^{n+2} + 2$ est vrai pour n, et montrons le pour n+1 (c'est-à-dire qu'on veut montrer que $\sum_{j=1}^{n+2} j 2^j = (n+1)2^{n+3} + 2$).

$$\sum_{j=1}^{n+2} j 2^j = \sum_{j=1}^{n+1} j 2^j + (n+2)2^{n+2}$$

$$= n2^{n+2} + 2 + n2^{n+2} + 2 \cdot 2^{n+2}$$

$$= 2^{n+2}(n+n+2) + 2$$

$$= (2n+2)2^{n+2} + 2$$

$$= (n+1)2^{n+3} + 2,$$

ce qu'on voulait démontrer.

(Explications plus détaillées des étapes de calculs: On écrit d'abord la partie gauche de l'égalité avec n+1. On la décompose en deux parties, la somme qu'on connait grâce à l'hypothèse, $\sum_{j=1}^{n+2} j 2^j$, et le dernier terme, $(n+2)2^{n+2}$, qu'on obtient en remplaçant j par n+2. On utilise l'hypothèse de récurrence, $\sum_{j=1}^{n+1} j 2^j = n 2^{n+2} + 2$, puis on réorganise ensuite les termes pour obtenir $(n+1)2^{n+3} + 2$.)

Conclusion: Puisque P(0) est vraie et P(n) implique P(n+1), par récurrence on obtient que P(n) est vraie pour tout $n \in \mathbb{N}$.

Exercice 2.

Donnez un exemple de suite $(a_n)_{n\geq 0}$ telle que

- (1) $a_n > 0$ pour tout $n \in \mathbb{N}$,
- (2) $(a_n)_{n\geq 0}$ n'est pas bornée,
- (3) $(a_n)_{n\geq 0}$ ne tend pas vers $+\infty$ quand $n\to +\infty$.

Justifiez votre réponse.

Solution

On cherche un exemple de suite $(a_n)_{n\geq 0}$ positive et non bornée qui ne tend pas vers $+\infty$ quand $n\to +\infty$.

Rappelons d'abord les définitions: Une suite est bornée si il existe $m, M \in \mathbb{R}$ tel que pour tout $n \in \mathbb{N}$, $m \le a_n \le M$. Notons que comme $a_n > 0$ pour tout $n \in \mathbb{N}$, on peut poser m = 0 et a_n est forcément minorée par m.

Une suite diverge vers ∞ si pour tout M' > 0, il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \geq n_0$, $a_n > M'$.

Ainsi, comme on cherche une suite (a_n) positive, non-bornée et qui ne tend pas à l'infinie, on veut les propriétés suivantes pour a_n :

- i) $a_n > 0$ pour tout $n \in \mathbb{N}$
- ii) si pour tout $M \in \mathbb{R}$, il existe $n \in \mathbb{N}$ avec $a_n > M$
- iii) il existe $M' \in \mathbb{R}$ tel que pour tout $n_0 \in \mathbb{N}$ il existe $n \geq n_0$ tel que $a_n < M'$.

Toute suite dont les termes alternent en une sous-suite qui tend vers l'infini et une sous-suite bornée fait l'affaire. Par exemple, la suite

$$a_n = \begin{cases} 1 & \text{si } n \text{ est impair} \\ n+1 & \text{si } n \text{ est pair} \end{cases}$$

- i) la suite (a_n) est positive, car $a_n > 0$ pour tout n.
- ii) la suite (a_n) est non-bornée. Pour tout M > 0, on pose $n = 2\lfloor M \rfloor$. Comme n est pair, on a $a_n = 2\lfloor M \rfloor + 1 > M$.
- iii) La suite (a_n) ne tend pas vers ∞ . En effet, posons M=10, et soit $n_0 \geq 0$. On cherche $n \geq N$ tel que $a_n \leq 10$. Prenons $n=2n_0+1$. Alors n est impair et $n>n_0$, et on a $a_n=1<10$.

