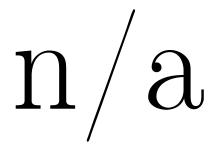


Ens: A. Lachowska Analyse I - (n/a) 11 janvier 2021 3 heures



SCIPER: 999999

Attendez le début de l'épreuve avant de tourner la page. Ce document est imprimé recto-verso, il contient 8 pages (les dernières pouvant être vides), et 34 questions. Ne pas dégrafer.

- Posez votre carte d'étudiant sur la table.
- Aucun document n'est autorisé.
- L'utilisation d'une **calculatrice** et de tout outil électronique est interdite pendant l'épreuve.
- Pour les questions à **choix multiple**, on comptera:
 - +3 points si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - -1 point si la réponse est incorrecte.
- Pour les questions de type **vrai-faux**, on comptera:
 - +1 point si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - -1 point si la réponse est incorrecte.
- Utilisez un **stylo** à encre **noire ou bleu foncé** et effacez proprement avec du **correcteur blanc** si nécessaire.
- Si une question est erronée, l'enseignant se réserve le droit de l'annuler.

Respectez les consignes suivantes Read these guidelines Beachten Sie bitte die unten stehenden Richtlinien										
choisir une répor Antwor	ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen					Corriger une réponse Correct an answer Antwort korrigieren				
X	\checkmark									
ce qu'il ne faut <u>PAS</u> faire what should <u>NOT</u> be done was man <u>NICHT</u> tun sollte										
						•				

Partie commune, 23 questions à choix multiple

Pour chaque question marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'une seule réponse correcte par question.

Question 1: Pour toute fonction $f: \mathbb{R} \to \mathbb{R}$ deux fois dérivable sur \mathbb{R} qui admet en x = 0 un point de minimum local, on a:

$$f'(0) = 0 \text{ et } f''(0) \neq 0$$

$$f'(0) \neq 0 \text{ et } f''(0) \neq 0$$

$$f'(0) = 0 \text{ et } f''(0) \ge 0$$

$$f'(0) = 0 \text{ et } f''(0) \le 0$$

Question 2: Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) = \begin{cases} 1 & \text{si } x \le 0, \\ \sqrt{1 - x^2} & \text{si } 0 < x \le 1, \\ 0 & \text{si } x > 1. \end{cases}$$

Alors:

f est dérivable en x=0 et continue en x=1

f est dérivable à gauche en x=0 et dérivable en x=1

f est continue en x=0 et dérivable en x=1

f est dérivable à droite en x=0 et dérivable à gauche en x=1

Question 3: Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = x^3$. Soit $f_1 = f$ et, pour tout $n \ge 2$, $f_n = f \circ f_{n-1}$. Alors pour tout $n \ge 1$:

$$\int f_n(r) = r^{(3n)}$$

$$f_n(x) = (3x)^n$$

$$\int f_n(x) = x^{(3^n)}$$

Question 4 : Soit $c \in \mathbb{R}$, et $(a_n)_{n \geq 1}$ la suite définie par

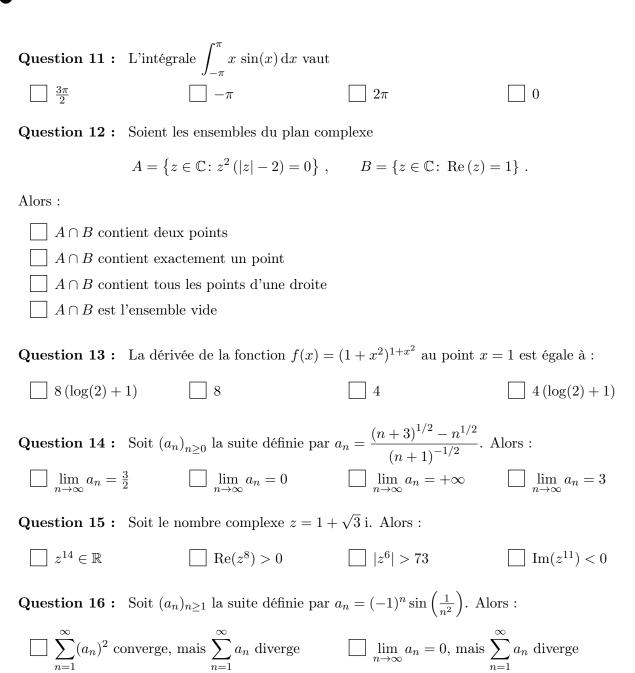
$$a_n = \sum_{k=0}^n \frac{2^k}{k!}$$
 si n est pair, $a_n = \left(\sum_{k=0}^n \frac{1}{k!}\right)^c$ si n est impair.

Alors:

 \square la suite $(a_n)_{n\geq 1}$ converge pour exactement une valeur de c

 \square la suite $(a_n)_{n\geq 1}$ diverge quelle que soit la valeur de c

Question 5: Soit $f:]-\pi, \pi[\setminus \{0\} \to \mathbb{R}$ la fonction définie par $f(x) = \frac{\operatorname{Arctg}(x^2)}{r \sin(x)}$. Alors: f admet un prolongement par continuité en x=0, noté \hat{f} , et $\hat{f}(0)=0$. f admet un prolongement par continuité en x=0, noté \hat{f} , et $\hat{f}(0)=1$. f admet un prolongement par continuité en x=0, noté \hat{f} , et $\hat{f}(0)=\frac{\pi}{2}$. f n'admet pas de prolongement par continuité en x=0 car $\lim_{x\to 0^+} f(x) \neq \lim_{x\to 0^-} f(x)$. **Question 6 :** Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = x^2 \sin(x^2)$, et $I \subset \mathbb{R}$ son ensemble image, $I = \{ y \in \mathbb{R} : \exists x \in \mathbb{R} \text{ tel que } f(x) = y \}.$ Alors: $\prod I=\mathbb{R}$ I = [-1, 1]**Question 7:** Soit A l'ensemble défini par $A = \{x \in \mathbb{R} : 0 < \text{Arctg}(\frac{1}{x}) < \frac{\pi}{4}\}$. Alors : A = [0, 1]A n'est pas borné $A = \left[1, \frac{\pi}{2}\right]$ $\prod \inf A = \frac{\pi}{2}$ **Question 8 :** Soit la série avec paramètre $b \in \mathbb{R}$ définie par : $s = \sum_{k=0}^{\infty} \left(b + \frac{1}{k} \right)^k$ Alors s converge pour tout : $b \in]-1,1[$ b < 1 $b \leq 1$ $b \in [-1, 1]$ **Question 9 :** Soient a et b deux nombres réels tels que la fonction $f(x) = \begin{cases} ax + b & \text{si } x \le 0, \\ \frac{\sqrt{1+x} - 1}{2} & \text{si } x > 0, \end{cases}$ est dérivable en x = 0. Alors : Question 10: Parmi les fonctions $f(x) = \begin{cases} \sqrt{|x|} \sin(\frac{1}{x}) & \text{si } x \neq 0, \\ 1 & \text{si } x = 0, \end{cases} \qquad g(x) = \begin{cases} \frac{1}{x} \operatorname{Arctg}(x) & \text{si } x \neq 0, \\ 1 & \text{si } x = 0, \end{cases}$ lesquelles sont continues en x = 0? \bigcap ni f, ni g $\int f \operatorname{et} g$



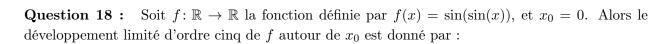
Question 17: Pour toute fonction $f: [0,4] \to \mathbb{R}$, continue sur [0,4] et dérivable sur [0,4], qui satisfait $f'(x) \ge 2$ pour tout $x \in]0,4[$, on a :

$$0 \le f(3) - f(2) \le 1$$

$$f(4) - f(1) \le 4$$

$$f(4) - f(0) \le 1$$

$$f(2) - f(0) \ge 4$$



$$f(x) = x - \frac{1}{3}x^3 + \frac{1}{10}x^5 + x^5\varepsilon(x)$$

$$f(x) = x - \frac{1}{3}x^3 + \frac{1}{120}x^5 + x^5\varepsilon(x)$$

$$f(x) = x - \frac{1}{6}x^3 + \frac{1}{120}x^5 + x^5\varepsilon(x)$$

Question 19: Soit $f:]-1,1[\to \mathbb{R}$ la fonction définie par $f(t) = \frac{1}{4+3t}$, et $t_0 = 0$. Alors le développement limité d'ordre deux de f autour de t_0 est donné par :

$$f(t) = \frac{1}{4} - \frac{3}{16}t + \frac{9}{32}t^2 + t^2\varepsilon(t)$$

$$f(t) = \frac{1}{4} + \frac{3}{16}t - \frac{9}{64}t^2 + t^2\varepsilon(t)$$

$$f(t) = \frac{1}{4} - \frac{3}{16}t + \frac{9}{64}t^2 + t^2\varepsilon(t)$$

$$f(t) = \frac{1}{4} - \frac{3}{16}t + \frac{9}{128}t^2 + t^2\varepsilon(t)$$

Question 20: L'intégrale généralisée $\int_{1}^{2^{-}} \frac{x+1}{\sqrt{2-x}} dx$

converge et vaut $\frac{8}{3}$

| | converge et vaut 4

converge et vaut $\frac{16}{3}$

diverge

Question 21 : L'intervalle de convergence I de la série entière $\sum_{n=0}^{\infty} \sqrt{n} (x+1)^n$ est donné par :

$$I =]-2,0[$$

$$I = \left[-\frac{5}{2}, \frac{1}{2} \right]$$

$$I = \mathbb{R}$$

Question 22 : L'intégrale $\int_0^1 x \sqrt{x^2 + 1} dx$ vaut

Question 23 : Soit $(a_n)_{n\geq 1}$ la suite définie par $a_n = \frac{(5n+1)^n}{n^n 5^n}$. Alors :

Partie commune, 11 questions du type Vrai ou Faux

Pour chaque question, marquer (sans faire de ratures) la case VRAI si l'affirmation est **toujours** vraie ou la case FAUX si elle n'est pas toujours vraie (c'est-à-dire si elle est parfois fausse).

Question 24: Soit $f:]0,1[\to \mathbb{R}$ une fonction monotone, non-constante, et dérivable sur]0,1[. Alors soit $f'(x) \ge 0$ pour tout $x \in]0,1[$, soit $f'(x) \le 0$ pour tout $x \in]0,1[$.

VRAI FAUX

Question 25 : Pour tout $y \in \mathbb{R}$ donné, $y \neq 0$, l'équation $z^4 = \mathrm{i}\, y$ possède exactement quatre racines distinctes dans \mathbb{C} .

☐ VRAI ☐ FAUX

Question 26 : Soit $(a_k)_{k\geq 0}$ une suite de nombres réels telle que pour tout $k\geq 0$, $a_k\neq 0$, et telle que $\lim_{k\to\infty}\left|\frac{a_{k+1}}{a_k}\right|=0$. Alors la série entière $\sum_{k=0}^\infty a_k\,x^k$ converge pour tout $x\in\mathbb{R}$.

☐ VRAI ☐ FAUX

Question 27 : Soit $A \subset \mathbb{R}$. Si inf $A \in A$ et sup $A \in A$, alors A est un intervalle fermé.

☐ VRAI ☐ FAUX

Question 28: Soient g et h deux fonctions dérivables sur]-1,1[, telles que g(0)=h(0)=0, et $h'(x)\neq 0$ pour tout $x\in]-1,1[$. Si $\lim_{x\to 0}\frac{g'(x)}{h'(x)}$ n'existe pas, alors $\lim_{x\to 0}\frac{g(x)}{h(x)}$ n'existe pas.

☐ VRAI ☐ FAUX

Question 29 : Soit $f: \mathbb{N} \to \mathbb{R}$ une fonction telle que pour tout $n \ge 1$, f(n) > n. Alors la série $\sum_{n=1}^{\infty} \frac{1}{f(n)}$ converge.

VRAI FAUX

