Analyse I Résumé: Calcul différentiel.

Définitions et résultats de base.

1. (Dérivée d'une fonction). Une fonction $f: E \to F$ est dite dérivable en $x_0 \in E$ s'il existe la limite

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} := f'(x_0)$$

Cette limite est appelée la dérivée de f(x) en $x = x_0$.

2. (Fonction différentiable) Une fonction $f: E \to F$ est dite différentiable en $x_0 \in E$ si f(x) admet une présentation

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + r(x),$$

telle que
$$\lim_{x \to x_0} \frac{r(x)}{x - x_0} = 0.$$

- 3. Une fonction est dérivable en $x = x_0$ si et seulement si elle est différentiable en $x = x_0$.
- 4. Une fonction dérivable en $x = x_0$ est continue en $x = x_0$. La réciproque est fausse en général.
- 5. La fonction f(x) admet une dérivée à gauche (resp. à droite) en $x=x_0$ s'il existe la limite $\lim_{x\to x_0^-}\frac{f(x)-f(x_0)}{x-x_0}:=f_g'(x_0)$ (resp. $\lim_{x\to x_0^+}\frac{f(x)-f(x_0)}{x-x_0}:=f_d'(x_0)$).
- 6. Une fonction est dérivable en $x = x_0$ si et seulement si les dérivée à gauche et à droite existent et $f'_g(x_0) = f'_d(x_0)$.
- 7. Opérations algébriques sur les dérivées.

Soient $f, g: E \to F$ deux fonctions dérivables en $x_0 \in E$. Alors

$$(\alpha f + \beta g)'(x_0) = \alpha f'(x_0) + \beta g'(x_0), \qquad \alpha, \beta \in \mathbb{R}$$

$$(f \cdot g)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - g'(x_0)f(x_0)}{g^2(x_0)}, \qquad g(x) \neq 0, x \in E$$

- 8. Dérivée de la fonction composée.
 - Si $f: E \to F$ est dérivable en $x_0, f(E) \subset G$, et $g: G \to H$ est dérivable en $f(x_0)$, alors

$$(g \circ f)'(x_0) = g'(f(x_0))f'(x_0).$$

9. Dérivée de la fonction réciproque.

Soit $f: I \to F$ une fonction bijective et continue sur un intervalle ouvert I, dérivable en $x_0 \in I$, et telle que $f'(x_0) \neq 0$. Alors la fonction réciproque $f^{-1}: F \to I$ est dérivable en $y_0 = f(x_0)$ et on a

$$(f^{-1})'(y_0) = \frac{1}{f'(f^{-1}(y_0))}.$$

- 10. Une fonction $f: E \to F$ est n fois dérivable si elle admet une dérivée d'ordre n, $f^{(n)}(x) := (f^{(n-1)}(x))'$.
- 11. Une fonction $f: E \to F$ est de classe $C^n(E, F)$ si elle a une dérivée d'ordre n qui est continue sur E.

Propriétés des fonctions dérivables.

12. Théorème (Rolle).

Soient a < b deux nombres réels, et $f: [a,b] \to F$ une fonction telle que

- (a) $f:[a,b] \to F$ est continue sur [a,b]
- (b) f est dérivable sur a, b
- (c) f(a) = f(b)

Alors il existe au moins un point $c \in]a, b[$ tel que f'(c) = 0.

13. Théorème des accroissements finis.

Soient a < b deux nombres réels, et $f: [a, b] \to F$ une fonction telle que

- (a) $f:[a,b] \to F$ est continue sur [a,b]
- (b) f est dérivable sur a, b

Alors il existe au moins un point $c \in]a, b[$ tel que $f'(c) = \frac{f(b) - f(a)}{b - a}$.

14. Généralisation du théorème des accroissements finis.

Soient a < b deux nombres réels, et $f, g : [a, b] \to F$ deux fonctions telles que

- (a) $f, g: [a, b] \to F$ sont continues sur [a, b]
- (b) f, g sont dérivables sur [a, b] et $g'(x) \neq 0$ sur [a, b]

Alors il existe au moins un point $c \in]a, b[$ tel que $\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$

15. Règle de Bernoulli-L'Hospital.

Soient $f, g: I \setminus \{x_0\} \to \mathbb{R}$ deux fonctions telle que

- (a) f, g sont dérivables sur $I \setminus \{x_0\}$ et $g(x) \neq 0, g'(x) \neq 0$ sur $I \setminus \{x_0\}$;
- (b) $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = \rho$, où $\rho = 0, +\infty, -\infty$;
- (c) $\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \mu \in \overline{\mathbb{R}}.$

Alors $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \mu$.

16. La règle de Bernoulli-L'Hospital marche aussi pour les limites lorsque $x \to \pm \infty$ et $x \to a^{\pm}$.

2

Développements limités et formule de Taylor

17. (Développement limité).

Soit $f: E \to F$ une fonction définie au voisinage de x = a. S'il existent les nombres $a_1, a_2, \ldots a_n \in \mathbb{R}$ tels que pour tout $x \in E, x \neq a$, on a

$$f(x) = a_0 + a_1(x - a) + a_2(x - a)^2 + \ldots + a_n(x - a)^n + (x - a)^n \varepsilon(x),$$

où $\lim_{x\to a} \varepsilon(x)=0$, alors on dit que f admet un développement limité (DL) d'ordre n autour de x=a.

- 18. Si f admet un développement limité d'ordre n autour de x=a, celui-ci est unique.
- 19. Soit $f: I \to F$ une fonction (n+1) fois continûment dérivable sur l'intervalle ouvert I, et soit $a \in I$. Alors la formule de Taylor

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \ldots + \frac{f^{(n)}(a)}{n!}(x - a)^n + \frac{f^{(n+1)}(u)}{(n+1)!}(x - a)^{n+1},$$

où u est un nombre entre a et x, nous fournit le développement limité de f d'ordre n autour de x=a. On peut aussi écrire $u=a+\theta(x-a)$, où $0<\theta<1$.

- 20. Opérations algébriques sur les développements limités.
 - Le DL d'ordre n autour de x = a d'une combinaison linéaire des deux fonctions est la même combinaison linéaire des deux DL d'ordre n autrour de x = a.
 - Le DL d'ordre n autour de x = a du produit des deux fonctions est le produit des deux DL autour de x = a, où on ne conserve que les termes d'ordre n.
 - Le DL d'ordre n autour de x=a du quotient des deux fonctions est le résultat de division polynômiale des deux DL autour de x=a, où on ne conserve que les termes d'ordre n.
- 21. DL d'une fonction composée.

Soit

$$f(x) = a_1(x-a) + a_2(x-a)^2 + \ldots + a_n(x-a)^n + (x-a)^n \varepsilon_1(x),$$

et

$$g(y) = g(0) + b_1 y + b_2 y^2 + \ldots + b_n y^n + y^n \varepsilon_2(y),$$

les DL de f autour de x=a et de g autour de y=0. En particulier, on a f(a)=0. Alors $g\circ f$ admet un DL d'ordre n autour de x=a avec la partie principale

$$g(0) + b_1(P_f^n(x-a)) + b_2(P_f^n(x-a))^2 + \dots,$$

où $P_f^n(x-a) = a_1(x-a) + a_2(x-a)^2 + \ldots + a_n(x-a)^n$ est la partie principale du DL de f autour de x=a, où on ne conserve que les termes d'ordre n.

Étude de fonctions.

- 22. Si $f: E \to F$ dérivable en x_0 , et f(x) admet un extremum local en x_0 , alors $f'(x_0) = 0$.
- 23. Soit a < b, et $f : [a, b] \to F$ est une fonction continue sur [a, b], dérivable sur [a, b] et telle que f'(x) = 0 pour tout $x \in]a, b[$. Alors f(x) est constante sur [a, b].

- 24. Soit $f:[a,b] \to F$ est une fonction continue sur [a,b], dérivable sur [a,b[, où a < b. Alors: (a) f(x) est croissante (décroissante) sur [a,b] si est seulement si $f'(x) \ge 0$ (resp. $f'(x) \le 0$) pour tout $x \in]a,b[$.
 - (b) Si f'(x) > 0 (resp. f'(x) < 0) pour tout $x \in]a, b[$, alors f(x) est strictement croissante (resp. décroissante) sur [a, b[.
- 25. (Condition suffisante pour qu'une fonction ait un extremum local). Soit $f \in C^n(I, F)$, où I est un intervalle ouvert, $c \in I$, et $n \in \mathbb{N}^*$ est un nombre <u>pair</u> tel que

$$f'(c) = f''(c) = \dots = f^{(n-1)}(c) = 0,$$

mais $f^{(n)}(c) \neq 0$. Alors

- f admet un minimum local au point x = c si $f^{(n)}(c) > 0$;
- -f admet un maximum local au point x = c si $f^{(n)}(c) < 0$.
- 26. (Condition suffisante pour qu'une fonction ait un point d'inflextion). Soit $f \in C^n(I, F)$, où I est un intervalle ouvert, $c \in I$, et $n \in \mathbb{N}$, n > 1 est un nombre impair tel que

$$f''(a) = \dots = f^{(n-1)}(a) = 0,$$

mais $f^{(n)}(a) \neq 0$. Alors le point (a, f(a)) est un point d'inflexion de f.

27. (Convexité). Soit $f \in C^2(I, F)$, où I est un intervalle ouvert. Alors f est convexe sur I si est seulement si f''(x) > 0 pour tout $x \in I$.

Calcul des dérivées.

1. Quelques fonctions et leurs dérivées.

$$\begin{array}{c|cccc} f(x) & f'(x) \\ \hline x^r & rx^{r-1}, & r \in \mathbb{R}, & r \neq 0 \\ e^x & e^x \\ a^x & a^x \ln(a), & a > 0, & a \neq 1 \\ \ln(x) & \frac{1}{x} \\ \log_a(x) & \frac{1}{x \ln(a)}, & a > 0, & a \neq 1 \\ \sin(x) & \cos(x) & -\sin(x) \\ \cos(x) & -\sin(x) & \frac{1}{\cos^2(x)} \\ \arctan(x) & \frac{1}{\sqrt{1-x^2}} \\ \arccos(x) & -\frac{1}{\sqrt{1-x^2}} \\ \arctan(x) & \frac{1}{1+x^2} \\ \sinh(x) & \cosh(x) \\ \cosh(x) & \sinh(x) \\ \tanh(x) & \frac{1}{\cosh^2(x)} \end{array}$$

2. (Dérivée logarithmique).

Si les fonctions f(x) et $\ln(f(x))$ sont dérivables, f(x) > 0, alors on a

$$f'(x) = f(x)(\ln(f(x)))'.$$

En particulier, on a

$$(x^x)' = x^x(\ln(x) + 1), \quad x > 0.$$

Si les fonctions f(x), g(x) sont dérivables et f(x) > 0, alors on a

$$(f(x)^{g(x)})' = f(x)^{g(x)} \left(g'(x) \ln(f(x)) + g(x) \frac{f'(x)}{f(x)} \right), \qquad f(x) > 0.$$