Chapitre 2. Suites des nombres réels.

Exemples des suites. Raisonnement par récurrence.

Def Une suite de nombres réels est rune application $f: \mathbb{N} \to \mathbb{R}$ définie pour tout nombre naturel (pour tout $n \ge n_0 \in \mathbb{N}$)

Notation: (a_n) - suite où $a_n = f(n)$; $(a_n)_{n \ge 0} = \{a_0, a_1, a_2 \dots \}$; $\forall a_i \in \mathbb{R}$ ensemble ordonné

- $\pm x$. (1) $\alpha_n = n$ {0, 1, 2, 3, ...}
 - (2) $a_n = \frac{1}{h+1}$ $\begin{cases} 1, \frac{1}{2}, \frac{1}{3}, \dots \end{cases}$
 - (3) $q_n = (-1)^n \qquad \begin{cases} 1, -1, 1, -1 \end{cases}$
 - (4) fo=0, fi=1, fn+2=fn+fn+1 KnEN Suite de Fibonacci (1) définie par récurrence {0,1,1,2,3,5,8,13,...}
 - (5) Suite arithmétique an=a·n+b, a, b ∈ R, a ≠ 0
 - (6) Suite géométrique $a_n = a \cdot r^n$, $a, r \in \mathbb{R}$, $a \neq 0, r \neq 0$.

Déf. Une suite est majorée (minorée) sil existe un nombre M (m) réel
tel que an & M th & M (an > m th & N)
Déf. Une suite est majorée (minorée) sil existe un nombre M (m) réel tel que an \leq M \neq
Remarque. Déf $1 \times 1 = X$ $Si \times 20$, $X \in \mathbb{R}$ valeur absolue de $X \in \mathbb{R}$ $1 \times 1 = -X$ $Si \times 20$, $X \in \mathbb{R}$
(an) est bornée L=> 3 M>0 tel que lan1 = M Vn E M
Si B = an = A Hn = M => M = max(IAI, IBI) => lan1 = M.
B O A
Déf. Une suite (an) est croissante (strictement croissante) si pour tout $n \in \mathbb{N}$ on a $a_{n+1} \ge a_n$ $(a_{n+1} > a_n)$
on a $a_{n+1} \ge a_n$ $(a_{n+1} > a_n)$
Une suite (an) est décroissante (strictement décroissante) si pour tout nEN
on α $\alpha_{n+1} \leq \alpha_n$ $(\alpha_{n+1} < \alpha_n)$

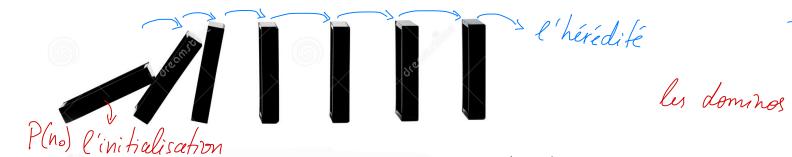
Une suite est dite (strictement) monotone si elle est (strictement) croissante ou (strictement) décroissante.

```
E_{X}. (1) Q_n = N Strictement croissante: Q_{n+1} - Q_n = N+1-N=1>0
       Elle n'est pas majorée: M n'est pas majoré (on a démontré avant)
Elle est minoré par O.
  (2) Q_n = \frac{1}{n+1} strictement décroissante : Q_{n+1} = \frac{1}{n+2} < \frac{1}{n+1} = q_n \forall n \in \mathbb{N}
                        bornée: 0 < \frac{1}{n+1} \le 1  \forall n \in \mathbb{N}
 (3) a_n = (-1)^n pas monotone, bornée : -1 Lan \leq 1 \frac{1}{2} \frac{1}{2} \text{V}
(5) a_n = a \cdot n + b; Strickement croissante si a > 0, strickement decroissante si a < 0
a_{n+1} - a_n = a(n+1) + b - (an+b) = a
Archimède
Si a > 0 => \#S > 0 \#B \in \mathbb{R} \exists n \in \mathbb{N} : an > S - b \iff an+b > S
      => (an) n'est pas majorée; elle est minorée par b = an Un EN
    Si a <0 => (an) n'est pas minorée, elle est majorée par b.
(4) f_0 = 0, f_1 = 1, f_{n+2} = f_{n+1} f_{n+1}: f_{n+2} - f_{n+1} = f_n \ge 0 \ \forall n \in \mathbb{N} (somme des nombres naturels, f_0 \ge 0, f_1 \ge 0)
              (f_{n}) \text{ n'ust paus majorée} 
(f_{n+2} - f_{n+1} \ge 1 \quad \forall n \in \mathbb{N}^{*}
+ \quad f_{n+1} - f_{n} \ge 1
\vdots \quad f_{3} - f_{2} \ge 1 \quad \text{puisque } \mathbb{N}
= > la :
f_{n+2} \ge h+1
                                                                                 puisque N'n'est pas majoré
=> la suite (In) n'est pas majorée.
```

Raisonnement par récurrence. Soit P(h) une proposition dependant -5. d'un entier naturel n, telle que (i) Initialisation: $P(h_0)$ est vraie, et (2) Hérédifé: Pour tout $h \ge h_0$, P(h) implique P(h+1).

Alors P(h) est vraie pour tout $h \ge h_0$.

Proposition $\int_{0}^{2} -f_{h+1}f_{h-1} = (-1)^{h-1}$ $\forall h \in \mathbb{N}^{*}$, où (f_h) est la suite de Fibonacci. -53-Soit P(n) la proposition (1) L'initialisation: n=1: $f_1^2 - f_2 \cdot f_0 = 1^2 - 1 \cdot 0 = 1 = (-1)^{1-1} = 1$ Vrai. (2) L'hérédité. Supposons que P(n) soit vraie. Considérons P(n+1) $f_{n+1} - f_{n+2} \cdot f_n = (-1)^n \cdot f_{n+1} - f_{n+2} \cdot f_n = f_{n+1} \cdot (f_n + f_{n-1}) - (f_n + f_{n+1}) \cdot f_n =$ $= f_{n+1}f_n + f_{n+1}f_{n-1} - f_n - f_n + f_{n+1} = -\left(f_n^2 - f_{n+1}f_{n-1}\right) = -\left(-1\right)^{n-1} = \left(-1\right)^n$


Par récurrence, P(n) est vraie $\forall n \ge 1$.

Remarque. Généralisation de la méthode de recurrence: Soit P(n) une proposition qui dépend de $n \in \mathbb{N}$.

(1) $P(n_0)$, $P(n_{0+1})$ $P(n_0+k)$, k fixé sont vraies

(2) P(n), P(n+1),... P(n+k) => P(n+k+1) $\forall n > n_0$ $\forall n > n_0$

Dimonstration pour récurrence:

Il est important à demondrer les deux parties de l'argument: l'initialisation et l'hérédité

Contre-exemple 1 Hypothèse: Tout nombre naturel est égal au nombre naturel suivant.

Hérédité: Supposons que P(n) est vraie: n=n+1

Alors en ajourtant 1 à l'égalité on obtient n+1=n+2 => P(n+1) est vraie

Faute: On a oublié l'initialisation, mais $0 \neq 1$ (axiome de R) => L'hypothèse n'a par été démontrée.

Lx 'Ivouver la somme de n premier nombres naturels impairs.

 $5_3 = 1 + 3 + 5 = 9$

 $S_4 = 1 + 3 + 5 + 7 = 16$

 $S_1 = 1$ $S_2 = 1+3=4$ Hypothèse: $S_n = \sum_{k=1}^{1} (2k-1) = n^2$

P(n)

Dém: par récurrence: (1) Initialisation: déjà démontrée pour n=1,2,3,4 -55-(2) Hérédité: Supposons que $S_n = n^2$. Il faut en déduire que $S_{n+1} = (n+1)^2$. $S_{n+1} = (1+3+...+(2n-1)+(2n+1) = S_n+(2n+1) = n^2+(2n+1) = (n+1)^2$ Vrai. => pour récurrence, $\sum_{k=1}^{\infty} (2k-1) = h^2 \quad \forall n \in \mathbb{N}^*$ Contre-exemple 2. Hypothèse ,, Tous les crayons sont de la même couleur" (dans n'importe quel ensemble de n>1 crayons). Démi (i) Initialisation; n=1 Dans un ensemble d'un seule crayons

Dans un ensemble d'un seule crayons tous les crayons sont de la même couleur => P(1)

(2) Hérédité; $P(h) \Rightarrow P(n+1)$. On suppose que tont ensemble de n crayons contient seulement des crayons de la même couleur. Soit { C, C2... Cn+1} un ensemble arbitraire de (n+1) crayons Alors $\{C_1, C_2, ..., C_n\}$ sont tous de la même couleur ensembles $\{C_2, ..., C_{n+1}\}$ sont tous de la même couleur $\{S_n\}_{n=1}^{\infty}$ sont de la même couleur $\{C_1, C_2, ..., C_n, C_{n+1}\}$ sont de la même couleur $\{C_1, C_2, ..., C_n, C_{n+1}\}$ sont de la même couleur $\{C_n\}_{n=1}^{\infty}$ $\{C_n\}_{$ La faule: L'hérédité $P(n) \Rightarrow P(n+1)$ ne marche que $P(1) \not \Rightarrow P(2)$ Mais l'initialisation a été vérifiée seulement $P(1) \not \Rightarrow P(2)$ Mais l'initialisation a été vérifiée seulement P(1)A A

1 2 3 4 5 l'hérédité l'mitialisation

Limites des suites.

Def. On dit que la suite (x_n) est convergente et admet pour limite le nombre réel $l \in \mathbb{R}$ si pour tout E > 0 il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0$, on a $|x_n-l| \le E$.

Notation: $\lim_{n\to\infty} X_n = \ell$.

Remarque. |Xn-l| \(\x \) - \(\x \) - \(\x \) \(\x \) - \(\x \) \(\x \

tous les éléments de la snite après $\times n_6$

Quel que soit E>0, on peut foujours frouver $n_0 \in \mathbb{N}$ fel que tous les éléments de la suite $(X_n)_{n\geq n_0}$ (après n_0) se frouve dans l'intervalle $[\ell-E,\ell+E]$.

Def. Une suite qui n'est pas convergente est dite divergente.

Ex. La suite (a_n) , $a_n = \frac{1}{\sqrt{n+1}}$ ust convergente, $\lim_{n\to\infty} \frac{1}{\sqrt{n+1}} = 0$.

Démi Soit E>O. Il faut démontrer l'existence de no EN (qui peut dépendre de E)

tel que ¥n≥no => |an-0| ≤ E

Donc $\left|\frac{1}{\sqrt{n+1}}-0\right| \le \varepsilon \iff \frac{1}{\sqrt{n+1}} \le \varepsilon \iff 1 > \varepsilon \iff 1 >$

Soif $n_o = \lfloor \frac{1}{2^2} \rfloor \Rightarrow N_o + \vert = \lfloor \frac{1}{2^2} \rfloor + 1 > \frac{1}{2^2}$

=> $\forall h \ge n_0 => h+1 > h_0+1 > \frac{1}{E^2} => \frac{1}{V_{n+1}} \le E$ => pour tout E > 0 $\exists n_0 = \lfloor \frac{1}{E^2} \rfloor \in \mathbb{N}$ tel que $\forall n \ge n_0$, $\lceil \frac{1}{V_{n+1}} - 0 \rceil \le E$. => par la définition de la limite => $\lim_{n \to \infty} \frac{1}{V_{n+1}} = 0$.

Autrement: puisque M n'est pas borné => $\forall E>0 \exists n_0 \in M$: $n_0 \ge \frac{1}{E^2} - 1$ => $\forall n \ge n_0 => n \ge \frac{1}{E^2} - 1$ => $h+(\ge \frac{1}{E^2} => |\sqrt{n+1} - 0| \le E$ $= > \lim_{h \to \infty} \frac{1}{\ln t} = 0.$

Question 6.

La suite suivante est divergente:

 $3^{h}-2^{h}$ impaire, $n \ge 1$

$$a_n = (-1)^{\left(3^n - 2^n\right)}$$

$$\theta_n = \frac{1}{f_{n+2}}$$

$$b_{n} = \frac{1}{f_{n}+2}$$
 où f_{n} sont de nombres de Fibonacci $f_{n} \ge n-1 \Rightarrow \int_{f_{n}+2}^{1} \le \frac{1}{n+1}$

$$\forall \varepsilon > 0 \ \exists n \in \mathbb{N}; \ \int_{h_{0}+1}^{1} \le \varepsilon = n \Rightarrow \int_{h_{0}}^{1} \frac{1}{h_{0}+1} \le \frac{1}{h_{0}+1} \Rightarrow \lim_{h \to \infty}^{1} \frac{1}{h_{0}+1} = 0$$

$$f_{n} \ge n - 1 = 2 \int_{n+1}^{\infty} \frac{1}{h+1} \le \int_{n+1}^{\infty} \frac{1}{h+1} \le \frac{1}{h+1}$$

$$C_n = \frac{1}{\tan(80\pi n + \sqrt{g})}$$

tan
$$(80\pi n + \frac{t}{8}) = tan \frac{t}{8} \forall n \in \mathbb{N} \Rightarrow \frac{1}{tan \frac{t}{8}}$$

$$d_n = \cos(\pi n - 3\pi)$$

$$E_n = sin(\pi n + 7\pi)$$

$$Sm(\pi n + 7\pi) = 0$$
; $\{0, 0, 0, \dots\} \rightarrow 0$.
 $\forall n \in \mathbb{N}$ suite constante