Kapitel 6

Ableitung einer Funktion

Definition 6.1 Sei $f: E \subset \mathbb{R} \to \mathbb{R}$ in der Umgebung eines Punktes $x_0 \in E$ definiert. Dann ist f differenzierbar an der Stelle x_0 [f est dérivable en x_0] wenn der Grenzwert $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$ existiert. Dieser Grenzwert wird

Ableitung von f in x_0 [dérivée de f au point x_0] genannt, und wir schreiben

$$f'(x_0) := \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

Alternativ kann man die Ableitung durch Einführung der Variable $h:=x-x_0$ auch wie folgt definieren:

$$f'(x_0) := \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

Diese Form eignet sich oft besser zum Berechnen.

Wenn $f: E \to \mathbb{R}$ differenzierbar in $x_0 \in E$ ist, so können wir die Funktion

$$r(x) := f(x) - f(x_0) - f'(x_0)(x - x_0)$$

definieren. Für $x \neq x_0$ ergibt sich

$$\frac{r(x)}{x - x_0} = \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0).$$

Insbesondere gilt

$$\lim_{x \to x_0} \frac{r(x)}{x - x_0} = 0$$

oder, in Worten, r(x) konvergiert für $x \to x_0$ schneller als $x - x_0$ gegen 0. Die Funktion r(x) hat eine konkrete Interpretation: Sie ist der Fehler, den man macht,

wenn man in der Nähe von x_0 die Funktion f durch die lineare Funktion $f(x_0) + f'(x_0)(x - x_0)$ approximiert:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + r(x).$$
(6.1)

Man sieht sofort, dass f an der Stelle x_0 stetig sein muss. Aus Differenzierbarkeit folgt also immer Stetigkeit.

Die Existenz einer Funktion r mit obigen Eigenschaften ist äquivalent zur Differenzierbarkeit.

Theorem 6.2 Sei $f: E \subset \mathbb{R} \to \mathbb{R}$ in der Umgebung eines Punktes $x_0 \in E$ definiert. Dann ist f differenzierbar an der Stelle x_0 genau dann wenn es eine Funktion $r: E \to \mathbb{R}$ und eine Zahl $a \in \mathbb{R}$ gibt so dass

$$f(x) = f(x_0) + a(x - x_0) + r(x)$$

und $\lim_{x\to x_0} \frac{r(x)}{x-x_0} = 0$ gelten. In diesem Fall ist $a = f'(x_0)$.

Beweis. Eine Richtung wurde bereits oben nachgewiesen. Für die andere Richtung nehmen wir an, dass es eine Funktion r mit den genannten Eigenschaften gibt. Dann folgt

$$\frac{f(x) - f(x_0)}{x - x_0} = a + \frac{r(x)}{x - x_0} \xrightarrow{x \to x_0} a.$$

Bemerkung: Im Buch von Douchet/Zwahlen wird sprachlich zwischen Definition 6.1 [f est dérivable en x_0] und der äquivalenten Charakterisierung mittels der Existenz von r(x) [f est différentiable en x_0] sprachlich unterschieden. Dies ist eher ungewöhnlich.

6.1 Beispiele und Rechenregeln

Wir geben zunächst einige einfache Beispiele an.

• $f(x) = x^n$ ist für alle $x_0 \in \mathbb{R}$ differenzierbar und es gilt $f'(x_0) = nx_0^{n-1}$. Nachweis: Nach der binomischen Formel gilt

$$f(x_0 + h) - f(x_0) = (x_0 + h)^n - x_0^n = \sum_{k=0}^n \binom{n}{k} x_0^{n-k} h^k - x_0^n$$
$$= nx_0^{n-1} h + \sum_{k=2}^n \binom{n}{k} x_0^{n-k} h^k.$$

Da im zweiten Term nur Potenzen h^k mit $k \geq 2$ auftauchen, gilt also

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = nx_0^{n-1}.$$

• $f(x) = e^x$ ist für alle $x_0 \in \mathbb{R}$ differenzierbar und es gilt $f'(x_0) = e^{x_0}$. Die Ableitung von der Exponentialfunktion ist also wieder die Exponentialfunktion. Nachweis: Aus $e^{x_0+h} = e^{x_0}e^h$ folgt

$$f(x_0 + h) - f(x_0) = e^{x_0} (e^h - 1) = e^{x_0} \sum_{k=1}^{\infty} \frac{h^k}{k!} = e^{x_0} h + e^{x_0} \sum_{k=2}^{\infty} \frac{h^k}{k!}.$$

Wieder tauchen im zweiten Term nur Potenzen h^k mit $k \geq 2$ auf; also folgt $\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = e^{x_0}$.

• $f(x) = \sin x$ ist für alle $x_0 \in \mathbb{R}$ differenzierbar und es gilt $f'(x_0) = \cos x_0$. Nachweis: Mit Hilfe der Rechenregeln für Sinus und Cosinus ergibt sich

$$f(x_0 + h) - f(x_0) = \sin(x_0 + h) - \sin x_0 = 2\cos(x_0 + h/2) \cdot \sin(h/2). \quad (6.2)$$

Wir müssen jetzt noch ausnutzen, dass $\lim_{\varepsilon \to 0} \frac{\sin \varepsilon}{\varepsilon} = 1$ gilt. Diese Beziehung erhält man aus der Definition des Sinus als Potenzreihe (siehe Abschnitt 4.4):

$$\frac{\sin\varepsilon}{\varepsilon} = \frac{1}{\varepsilon} \sum_{m=0}^{\infty} (-1)^m \frac{\varepsilon^{2m+1}}{(2m+1)!} = 1 + \sum_{m=1}^{\infty} (-1)^m \frac{\varepsilon^{2m+1}}{(2m+1)!} \stackrel{\varepsilon \to 0}{\to} 1.$$

Es ergibt sich also aus (6.2), dass

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \cos(x_0 + h/2) \cdot \frac{\sin(h/2)}{h/2} = \cos x_0.$$

• Die Betragsfunktion f(x) = |x| ist *nicht* in $x_0 = 0$ differenzierbar, da für $\frac{f(h) - f(0)}{h} = \frac{|h|}{h}$ der Grenzwert für $h \to 0$ nicht existiert.

Das folgende Theorem enthält (fast) alle wichtigen Rechenregeln mit Ableitungen.

Theorem 6.3 Seien $f, g : E \subset \mathbb{R} \to \mathbb{R}$ zwei in $x_0 \in E$ differenzierbare Funktionen. Dann gelten die folgenden Aussagen:

(a) f + g ist in x_0 differenzierbar und

$$(f+q)'(x_0) = f'(x_0) + q'(x_0).$$

(b) Produktregel: $f \cdot g$ ist in x_0 differenzierbar und

$$f'(x_0) = f'(x_0) \cdot g(x_0) + f(x_0) \cdot g'(x_0).$$

(c) Quotientenregel: Wenn $g(x_0) \neq 0$ dann ist $\frac{f}{g}$ in x_0 differenzierbar und

$$\left(\frac{f}{g}\right)'(x_0) = \frac{g(x_0)f'(x_0) - g'(x_0)f(x_0)}{g^2(x_0)}.$$

(d) Kettenregel: Sei nun $g: G \to \mathbb{R}$, $f(E) \subset G$, in der Umgebung von $f(x_0)$ definiert. Wenn g in $f(x_0)$ differenzierbar ist, dann ist auch $g \circ f$ in x_0 differenzierbar und

$$g \circ f'(x_0) = g'(f(x_0)) \cdot f'(x_0).$$

Beweis. Wir beweisen nur (b) und (d).

Zu (b): Aus

$$f(x_0 + h)g(x_0 + h) - f(x_0)g(x_0)$$

= $(f(x_0 + h) - f(x_0))g(x_0 + h) + f(x_0)(g(x_0 + h) - g(x_0))$

folgt sofort

$$\lim_{h \to 0} \frac{f(x_0 + h)g(x_0 + h) - f(x_0)g(x_0)}{h} = f'(x_0)g(x_0) + f(x_0)g'(x_0).$$

Zu(d): Setze $y_0 := f(x_0)$. Aus den Beziehungen

$$f(x_0 + h) = y_0 + f'(x_0)h + r(x_0 + h),$$
 $g(y_0 + h) = g(y_0) + g'(y_0)h + g(y_0 + h),$

mit $r(x_0+h)/h \stackrel{h\to 0}{\to} 0$ und $q(y_0+h)/h \stackrel{h\to 0}{\to} 0$, folgt

$$g(f(x_0 + h)) = g(y_0 + \underbrace{f'(x_0)h + r(x)}_{=:\tilde{h}}) = g(y_0) + g'(y_0)\tilde{h} + q(y_0 + \tilde{h}).$$

Da $\tilde{h}/h \stackrel{h \to 0}{\to} f'(x_0)$, ergibt sich daraus

$$\lim_{h \to 0} \frac{g(f(x_0 + h)) - g(f(x_0))}{h} = g'(y_0)f'(x_0),$$

wobei zusätzlich noch

$$\lim_{h \to 0} \frac{q(y_0 + \tilde{h})}{h} = \lim_{h \to 0} \frac{q(y_0 + \tilde{h})}{\tilde{h}} \cdot \frac{\tilde{h}}{h} = \lim_{\tilde{h} \to 0} \frac{q(y_0 + \tilde{h})}{\tilde{h}} \cdot f'(x_0) = 0$$

ausgenutzt wurde.

Im Folgenden werden wir uns ein wenig entspannen und nicht mehr zwischen x und x_0 unterscheiden, wenn es nicht unbedingt notwendig ist.

Bemerkung 6.4 Wer sich die Quotientenregel schlecht merken kann, merkt sich einfach nur der Beziehung $\left(\frac{1}{g(x)}\right)' = -\frac{g'(x)}{g^2(x)}$ und macht den Rest mit der Produktregel:

$$\left(\frac{f(x)}{g(x)}\right)' = \left(f(x) \cdot \frac{1}{g(x)}\right)' = f'(x) \cdot \frac{1}{g(x)} - f(x)\frac{g'(x)}{g^2(x)} = \frac{g(x)f'(x) - g'(x)f(x)}{g^2(x)}.$$

Mit den Regeln von Theorem 6.3 lassen sich jetzt bequem Ableitungen für weitere Funktionen finden.

• Für $f(x)=x^{-n}=\frac{1}{x^n}$ mit $n\in\mathbb{N}, n\geq 1$ und $x\neq 0$ folgt aus der Quotientenregel

$$f'(x) = -\frac{nx^{n-1}}{x^{2n}} = -\frac{n}{x^{n+1}} = -nx^{-n-1}.$$

• Da $\cos x = \sin \left(x + \frac{\pi}{2}\right)$, erhalten wir aus der Kettenregel mit $g(y) = \sin(y)$ und $f(x) = x + \frac{\pi}{2}$:

$$\cos' x = g'\left(x + \frac{\pi}{2}\right) \cdot f'(x) = \cos\left(x + \frac{\pi}{2}\right) = -\sin(x).$$

• Für $x \neq \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$, ergibt sich die Ableitung von $\tan x$ aus

$$\tan' x = \left[\frac{\sin x}{\cos x}\right]' = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}.$$

Das folgende Resultat ist vielleicht etwas überraschend: Man kann die Ableitung der Umkehrfunktion sehr einfach aus der Ableitung der Originalfunktion bestimmen.

Theorem 6.5 Sei $f: I \to F$ bijektiv für ein ein offenes Intervall $I \subset \mathbb{R}$. Weiterhin sei f differenzierbar in x_0 und $f'(x_0) \neq 0$. Dann ist auch die Umkehrfunktion $f^{-1}: F \to I$ in $y_0 = f(x_0)$ differenzierbar und es gilt

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}.$$

 $\pmb{Beweis}.$ Ableitung der Beziehung $y=(f\circ f^{-1})(y)$ führt mit der Kettenregel auf

$$1 = (f \circ f^{-1})'(y_0) = f'(f^{-1}(y_0)) \cdot (f^{-1})'(y_0).$$

Division durch $f'(f^{-1}(y_0))$ liefert das gewünschte Ergebnis.

Zwei wichtige Beispiele für die Anwendung von Theorem 6.5.

• Wie betrachten $\arctan(y)$, die Umkehrfunktion vom $\tan x$:

$$\arctan' y = \frac{1}{\tan'(\arctan y)} = \cos^2(\arctan y) = \frac{1}{1+y^2},$$

wobei wir im letzten Schritt die Beziehung $\cos^2 x = \frac{1}{1+\tan^2 x}$ ausgenutzt haben.

• Der Ableitung des Logarithmus log : $\mathbb{R} \to \{x \in \mathbb{R} : x > 0\}$ als Umkehrfunktion der Exponentialfunktion $f(x) = e^x$ ist

$$\log' y = \frac{1}{f'(\log y)} = \frac{1}{e^{\log y}} = \frac{1}{y}.$$

Zum Abschluss dieses grundlegenden Abschnitts noch die Erweiterung von einseitigen Grenzwerten (siehe Abschnitt 5.6.1) auf Ableitungen.

Definition 6.6 Sei $f: E \subset \mathbb{R} \to \mathbb{R}$ und $x_0 \in E$.

• Falls f rechts von x_0 definiert ist, dann heisst f **rechtsseitig differenzierbar** [dérivable à droite] in x_0 wenn der rechtsseitige Grenzwert

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$$

existiert. Dieser Grenzwert heisst rechtsseitige Ableitung [dérivée à droite] und wird mit $f'_d(x_0)$ bezeichnet.

• Falls f links von x_0 definiert ist, dann heisst f linksseitig differenzierbar [dérivable à gauche] in x_0 wenn der linksseitige Grenzwert

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$$

existiert. Dieser Grenzwert heisst linksseitige Ableitung [dérivée à gauche] und wird mit $f'_a(x_0)$ bezeichnet.

Aus Theorem 5.24 folgt sofort, dass eine in der Umgebung von x_0 definierte Funktion genau dann in x_0 differenzierbar ist wenn sie links- und rechtsseitig differenzierbar ist und $f'_g(x_0) = f'_d(x_0)$. Dies erleichtert die Untersuchung von stückweise definierten Funktionen erheblich. Sei zum Beispiel $f: \mathbb{R} \to \mathbb{R}$ wie folgt definiert:

$$f(x) = \begin{cases} f_1(x) & \text{für } x < a \\ f_2(x) & \text{für } x \ge a, \end{cases}$$

für zwei in a differenzierbare Funktionen $f_1, f_2 : \mathbb{R} \to \mathbb{R}$ und $a \in \mathbb{R}$. Um nachzuweisen, dass f in $x_0 = a$ differenzierbar ist, geht man wie folgt vor:

- 1. Nachweis, dass f in $x_0 = a$ stetig ist, dass heisst Nachweis von $\lim_{x \to a^-} f_1(x) = f_2(a)$.
- 2. Nachweis, dass $f'_1(a) = f'_2(a)$.

Da die links- bzw. rechtsseitige Ableitung von f in a durch $f'_1(a)$ bzw. $f'_2(a)$ gegeben ist, folgt damit, dass f in differenzierbar ist.

6.2 Exkurs in die O-Notation

Die Landauschen Symbole [notations de Landau] o und O erlauben es, Approximationen wie die lineare Approximation (6.1) besonders kompakt auszudrücken, wenn die genaue Form des Fehlerterms r nicht von Interesse ist. Man muss sich allerdings ein wenig an die Schreibweise gewöhnen.

Wenn für eine gegebene Funktion r der Quotient $\frac{r(h)}{h}$ mit $h\to 0$ gegen 0 geht, sagt man r(h) sei "klein oh" von h und schreibt

$$r(h) = o(h)$$
. (für $h \to 0$)

Man beachte, dass o(h) hier nicht als Funktionswert zu verstehen ist, sondern nur als Aussage über das Verhalten der Funktion r in der Nähe von 0. Jetzt kann man zum Beispiel statt (6.1) schreiben

$$f(x_0 + h) = f(x_0) + f'(x_0)h + o(h), \quad (h \to 0)$$
(6.3)

und meint damit, dass es irgendeine (nicht näher bekannte) Funktion r mit r(h) = o(h) gibt, so dass $f(x_0 + h) = f(x_0) + f'(x_0)h + r(h)$.

Obige Definition kann von o(h) auf o(q(h)) für eine beliebige Funktion q (meist $q(h) = h^k$) und auf beliebige Grenzübergänge $x \to \xi$ verallgemeinert werden:

$$r(x) = o(q(x)), \quad \text{(für } x \to \xi\text{)}$$

schreibt man, wenn

$$\lim_{x \to \xi} \frac{r(x)}{q(x)} \to 0$$

gilt. Einige Beispiele:

- $3h^{n+1} + h^n = o(h^k)$ für $h \to 0$ wenn k < n-1;
- $\frac{\sin h}{h} 1 = o(h)$ für $h \to 0$;
- $\frac{1}{t} = o(1)$ für $t \to \infty$;
- $t^{1000} = o(e^t)$ für $t \to \infty$.

Wenn für eine gegebene Funktion R der Quotient $\frac{R(x)}{q(x)}$ für $x \to \xi$ beschränkt bleibt, schreibt man

$$R(x) = O(q(x)), \quad \text{(für } x \to \xi\text{)}.$$

Offenbar folgt aus R(x) = o(q(x)) immer R(x) = O(q(x)). Diese "gross Oh"-Notation erlaubt es mitunter das Grenzverhalten feiner zu beschreiben. Zum Beispiel werden wir sehen, dass für eine zwei Mal differenzierbare Funktion statt (6.3) auch

$$f(x_0 + h) = f(x_0) + f'(x_0)h + O(h^2) \quad (h \to 0)$$

geschrieben werden kann. Einige weitere Beispiele:

- $3h^{n+1} + 3h^n = O(h^k)$ für $h \to 0$ wenn k < n;
- $\frac{\sin h}{h} 1 = O(h^2)$ für $h \to 0$;
- $4t^{100} + 3t^{50} = O(t^{100})$ für $t \to \infty$.

6.3 Lokale Extrema

Aus Korollar 5.31 wissen wir bereits, dass eine stetige Funktion $f \in C([a,b])$ immer ihr Minimum und Maximum auf dem Intervall [a,b] annimmt. Diese bezeichnet man auch als globales Minimum und globales Maximum, um sie von den in diesem Abschnitt behandelten lokalen Minimum/Maximum zu unterscheiden.

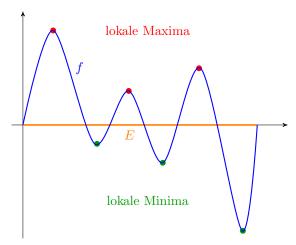
Definition 6.7 Sei $f: E \to \mathbb{R}$ in der Umgebung von $x_0 \in E$ definiert. f hat ein lokales Maximum [maximum local] in x_0 , wenn es ein $\delta > 0$ gibt, so dass

$$f(x_0) \ge f(x)$$
 für alle x mit $|x - x_0| < \delta$.

f hat ein lokales Minimum [minimum local] in x_0 , wenn es ein $\delta > 0$ gibt, so dass

$$f(x_0) \le f(x)$$
 für alle x mit $|x - x_0| < \delta$.

Im Gegensatz zum (globalen) Maximum darf f weiter weg von einem lokalen Maximum x_0 auch grössere Werte annehmen. Lokale Minima und lokale Maxima nennt man auch lokale Extrema [extrema locaux].



Graph einer Funktion mit mehreren lokalen Extrema.

Theorem 6.8 Sei $f: E \to \mathbb{R}$ in $x_0 \in E$ differenzierbar. Hat f ein lokales Extremum in x_0 , so gilt

$$f'(x_0) = 0.$$

 \Diamond

Beweis. Angenommen, f habe ein lokales Maximum in x_0 . Dann gelten

$$f'(x_0) = f'_d(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0$$

sowie

$$f'(x_0) = f'_g(x_0) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

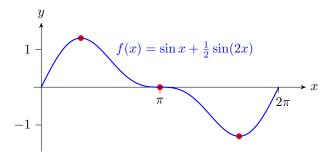
Also folgt $f'(x_0) = 0$. Für ein lokales Minimum erfolgt der Beweis analog, mit umgekehrten Vorzeichen. \square

Einen Punkt $x_0 \in E$ mit $f'(x_0) = 0$ nennt man einen **kritischen Punkt** [point critique] (oder auch: **stationären Punkt** [point stationnaire]) von f. Nicht alle kritischen Punkte sind lokale Maxima oder Minima.

Beispiel 6.9 Sei $f:[0,2\pi]\to\mathbb{R}$ gegeben durch

$$f(x) = \sin x + \frac{1}{2}\sin(2x).$$

Am Graph sieht man leicht, dass diese Funktion drei kritische Punkte hat:



Aus der Ableitung

$$f'(x) = \cos x + \cos(2x) = \cos x + 2\cos^2 x - 1 = (2\cos x - 1)(\cos x + 1)$$

ergeben sich im Intervall $[0, 2\pi]$ die drei kritischen Punkte

$$\frac{\pi}{3}$$
, π , $\frac{5\pi}{3}$,

von denen aber nur zwei Punkte auch lokale Extrema sind.

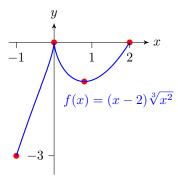
Um das (globale) Maximum oder Minimum einer stetigen Funktion $f:[a,b]\to \mathbb{R}$ zu finden, müssen wir unter den folgenden Kandidaten suchen:

- Punkte am Rand: a, b;
- Punkte, an denen f nicht differenzierbar ist;

• kritische Punkte x_0 mit $f'(x_0) = 0$.

Beispiel 6.10 Sei $f: [-1,2] \longrightarrow \mathbb{R}$ gegeben durch

$$f(x) = (x-2)\sqrt[3]{x^2}$$
.



Wir suchen die Punkte, wo f sein globales Minimum und sein globales Maximum annimmt. Bei der Ableitung muss man ein wenig für x < 0 aufpassen und dies mittels einer Fallunterscheidung behandeln. Man erhält:

$$f'(x) = \begin{cases} \frac{5x-4}{3\sqrt[3]{x}}, & x > 0\\ \frac{5x-4}{-3\sqrt[3]{-x}}, & x < 0. \end{cases}$$

Es ist klar, dass f in 0 nicht differenzierbar ist und dass der einzige kritische Punkt $x_0=\frac{4}{5}$ ist. Die Randpunkte des Intervalls liefern noch die Kandidaten -1 und 2. Nun gilt

$$f(-1) = -3,$$
 $f(0) = 0,$ $f\left(\frac{4}{5}\right) = -\frac{6}{5}\sqrt[3]{\frac{16}{25}},$ $f(2) = 0.$

Also wird das Minimum -3 im Punkt x = -1, und das Maximum 0 in den Punkten x = 0 und x = 2 angenommen. Der kritische Punkt liefert weder Maximum noch Minimum (nur ein lokales Minimum).

6.4 Der Mittelwertsatz der Differentialrechnung

Nach dem Zwischenwertsatz für stetige Funktionen (Theorem 5.32) folgt nun der Mittelwertsatz für differenzierbare Funktionen in verschiedenen Variationen.

Theorem 6.11 (Satz von Rolle [théorème de Rolle]) Sei $f \in C([a,b])$, mit a < b, eine in jedem Punkt von [a,b[differenzierbare Funktion. Gilt f(a) = f(b), dann existiert $\xi \in [a,b[$ mit $f'(\xi) = 0$.