(A1) Multiple Choice

a) Sei $f:[0,1] \to \mathbb{R}$ stetig in einem Punkt $x_0 \in (0,1)$. Dann gibt es eine Umgebung $(x_0 - \alpha, x_0 + \alpha) =: A$ um x_0 für ein $\alpha > 0$, so dass $A \subset (0,1)$ und f stetig auf A ist.

Herbst/Winter '24
Prof. J. Krieger
T. Schmid

O wahr

- () falsch
- b) Sei $f: E \to \mathbb{R}$ eine Funktion und $x_0 \in E$ so, dass $\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x)$ existiert. Dann ist f stetig in x_0 .
 - O wahr

- () falsch
- c) Betrachten Sie die Funktion $f: \mathbb{R} \to (0, \infty), \ f(x) = \sqrt{x^2 + 1}$. Dann gilt:
 - $\bigcap f$ ist injektiv und $\lim_{x\to\infty} f(x) = \infty$.
 - $\bigcap f$ ist surjektiv, stetig und $\lim_{x\to-\infty} f(x) = \infty$.
 - $\bigcap f$ ist nicht injektiv und $\lim_{x\to\infty} \frac{f(x)}{x}$ existiert in \mathbb{R} .
 - $\bigcap f$ ist stetig und $\lim_{x\to-\infty} \frac{f(x)}{\sqrt{|x|}}$ existiert in \mathbb{R} .
- d) Betrachten Sie die Funktion $f:(1,2]\to (-\infty,0],\ f(x)=(x-1)^3\log(x-1).$ Dann gilt:
 - $\bigcirc \ f \text{ ist nicht stetig in } x=2.$
- \bigcirc f ist stetig und weder injektiv noch surjektiv
- \bigcirc f ist stetig und surjektiv.
- \bigcirc f hat keinen Grenzwert in x = 1
- e) Betrachten Sie die Funktion $f:[-1,1]\to\mathbb{R}$ welche für ein $a\in\mathbb{R}$ und $b\in(0,1]$ wir folgt definiert ist.

$$f(x) = \begin{cases} \frac{\sin(x)}{|x|^b} & \text{für } x \in [-1,0) \cup (0,1], \\ a & \text{für } x = 0. \end{cases}$$

Dann gilt:

- \bigcirc f ist injektiv und nur stetig falls a = 0 und b < 1.
- \bigcirc f ist stetig für a = 1 wenn b < 1 sowie a = 0, b = 1.
- \bigcirc f ist injektiv aber für keine Werte von a, b stetig.
- \bigcirc f ist stetig für a = 0 wenn b < 1 oder a = b = 1.

(A2) Grenzwerte gegen Unendlich

Bestimmen Sie $\lim_{x\to +\infty} f(x)$ und $\lim_{x\to -\infty} f(x)$ für die Funktionen

a)
$$f(x) = 4x^7 - 18x^3 + 9$$

d)
$$f(x) = \frac{x^3 - 2x + 11}{3 - 6x^5}$$

b)
$$f(x) = \sqrt[3]{x} + 12x - 2x^2$$

e)
$$f(x) = \frac{x+8}{\sqrt{2x^2+3}}$$

c)
$$f(x) = \frac{8 - 4x^2}{9x^2 + 5x}$$

f)
$$f(x) = \frac{8+x-4x^2}{\sqrt{6+x^2+7x^4}}$$

(A3) Stetigkeit mit Parameter

a) Bestimmen Sie alle möglichen Werte für den Parameter $a \in \mathbb{R}$, so dass die folgende Funktion für alle $x \in \mathbb{R}$ stetig ist.

$$f(x) = \begin{cases} a^2x - a , & x \ge 3\\ 4, & x < 3 \end{cases}$$

b) Bestimmen Sie alle möglichen Werte für das Parameter-Paar $(a, b) \in \mathbb{R}$, so dass die folgende Funktion für alle $x \in \mathbb{R}$ stetig ist.

$$f(x) = \begin{cases} ax - b, & x \le -1\\ 2x^2 + 3ax + b, & -1 < x \le 1\\ 4, & x > 1 \end{cases}$$

c) Bestimmen Sie alle möglichen Werte für das Parameter-Paar $(a, b) \in \mathbb{R}$, so dass die folgende Funktion für alle $x \in \mathbb{R}$ stetig ist.

$$f(x) = \begin{cases} \sin(a\pi x) , & x \le 0 \\ \cos(\pi x + b\pi) , & x > 0 \end{cases}$$

(A4) Stetige Fortsetzung

Sei $f: (\frac{1}{2},1) \cup (1,\frac{3}{2}) \to \mathbb{R}$. Weiterhin sei $\hat{f}_1: (\frac{1}{2},\frac{3}{2}) \to \mathbb{R}$ gegeben durch:

$$\hat{f}_1(x) := \begin{cases} f(x) & \text{für } x \in (\frac{1}{2}, 1) \cup (1, \frac{3}{2}), \\ a & \text{für } x = 1. \end{cases}$$

Bestimmen Sie, falls möglich, $a \in \mathbb{R}$, so dass $\hat{f}_1(x)$ eine stetige Funktion auf $(\frac{1}{2},\frac{3}{2})$ wird. Führen Sie dies für die folgenden Funktionen f(x) durch

a)
$$f(x) = e^{-\frac{1}{|x-1|}}$$

c)
$$f(x) = \frac{x^2 + 3x - 4}{x^2 - x}$$

b)
$$f(x) = (x-1)\cos\left(\frac{1}{x-1}\right)$$
 d) $f(x) = \sin\left(\frac{1}{\sqrt{|x-1|}}\right)$

d)
$$f(x) = \sin\left(\frac{1}{\sqrt{|x-1|}}\right)$$

Hinweis zu b): Substituieren Sie y = x - 1 und benutzen Sie das Kriterium der zwei Polizisten, um den Grenzwert für $y \to 0$ zu analysieren.

2

(A5) Einseitige Grenzwerte

Bestimmen Sie die folgenden einseitigen Grenzwerte (falls sie existieren).

a)
$$\lim_{x \to 3^+} \frac{\sqrt{x} - \sqrt{3} + \sqrt{x+3}}{\sqrt{x^2 - 9}}$$

b)
$$\lim_{x \to 0^+} \sqrt{x} \sin\left(\frac{1}{x}\right)$$

c)
$$\lim_{x \to 0^+} \left(\sin(x)\right)^{1/x}$$