Herbst/Winter '24

(A1) Multiple Choice

a) Es gibt eine Funktion $f: E \to \mathbb{R}$ mit $E \subset \mathbb{R}$ und die einen Grenzwert in $x_0 \in E$ hat, aber $\lim_{x \to x_0} f(x) \neq f(x_0)$.

Prof. J. Krieger
T. Schmid

O wahr

O falsch

b) Sei $f:[-1,0)\cup(0,1]\to\mathbb{R}$ stetig in jedem Punkt $x_0\in(-1,0),\cup(0,1)$ und beschränkt. Dann lässt sich f stetig im Punkt 0 fortsetzen.

O wahr

O falsch

c) Sei $f:(a,b)\to(c,d)$ stetig in jedem Punkt $x_0\in(a,b)$ und bijektiv. Dann ist die Umkehrfunktion f^{-1} stetig in jedem Punkt $y_0\in(c,d)$.

O wahr

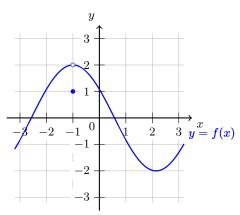
() falsch

d) Sei $f:[0,1]\to [0,1]$ streng monoton wachsend und $f(0)=0,\ f(1)=1.$ Dann ist f bijektiv.

O wahr

O falsch

e) Bestimmen Sie mit Hilfe des Graphen das Verhalten der Funktion um den Punkt -1. Hierbei bedeutet ein leerer Kreis an der Stelle x_0 eine Definitionslücke bei x_0 und ein gefüllter Kreis bei x_0 den Wert $f(x_0)$.



 $\bigcap \lim_{x \to -1} f(x)$ existiert nicht.

 $\bigcirc \lim_{x \to -1} f(x) = 2.$

 $\bigcirc \lim_{x \to -1} f(x) = 1.$

 $\bigcap_{x \to -1^-} \lim_{x \to -1^+} f(x) \neq \lim_{x \to -1^+} f(x)$

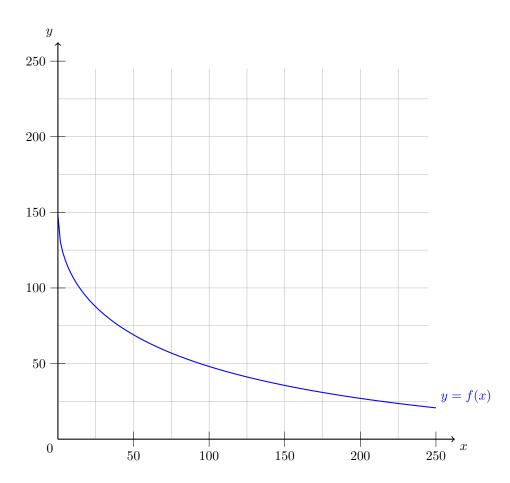
(A2) Definitionsbereich und Umkehrfunktion

Wir betrachten die Funktion

$$f: E \to \mathbb{R}, \quad x \mapsto e^{\sqrt{25-\sqrt{x}}}$$

wobei $E \subset \mathbb{R}$

- a) Bestimmen Sie den größtmöglichen Definitionsbereich E=D(f) und das dazugehörige Bild f(E) von f.
- b) Argumentieren Sie, dass f eine Zusammensetzung von streng monotonen Funktionen und damit injektiv ist.
- c) Bestimmen Sie die Umkehrfunktion f^{-1} . Geben Sie ihren Definitionsbereich und das Bild an.
- d) Zeichnen Sie den Graph der Umkehrfunktion in die unten stehende Abbildung ein.



(A3) Der Logarithmus

(i) Schreiben mit Hilfe der Definitionen des Logarithmus aus der Vorlesung den Ausdruck

$$z = (-2 + i)^{5+6i}$$

in der Form x + iy.

(ii) Betrachten Sie die Funktion

$$f: (1,2] \to (-\infty,0], \ f(x) = \log(x-1).$$

Prüfen Sie of die Funktion nach oben/unten beschränkt, monoton wachsend oder fallend und ausserdem surjektiv oder injektiv ist.

2

(A4) Stetigkeit nachweisen anhand des ϵ, δ -Kriteriums

Seien die beiden Funktionen f und g wie folgt definiert.

$$f: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & 7x - \frac{3}{2} \end{array} \right. \qquad g: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & x^2 \end{array} \right.$$

Weisen Sie die Stetigkeit beider Funktionen in jedem Punkt $x_0 \in \mathbb{R}$ mit Hilfe des ϵ, δ -Kriteriums nach.

(A5) Stetigkeit wiederlegen anhand des ϵ, δ -Kriteriums

Zeigen Sie, mit Hilfe des ϵ, δ -Kriteriums, dass die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = \begin{cases} x^2 & \text{für } x \ge \frac{1}{2} \\ x^3 & \text{für } x < \frac{1}{2} \end{cases}$$

in $x_0 = \frac{1}{2}$ nicht stetig ist. Zeigen Sie dazu, dass sie für hinreichend kleine $\epsilon > 0$ kein entsprechendes $\delta > 0$ finden können.

(A6) Stetigkeit

a) Finden Sie $a,b,c,d\in\mathbb{R},$ so dass die reelle Funktion f auf ganz \mathbb{R} stetig wird.

$$f(x) = \begin{cases} 0, & x \le -5 \\ \sqrt{x+a}, & -5 < x \le -1 \\ 2x^2 + bx + 1, & -1 < x \le 1 \\ cx + d, & 1 < x \le 2 \\ 0, & 2 < x \end{cases}$$

Zeichnen Sie den Graph dieser Funktion auf dem Intervall x = [-6, 3].