$SERIE\ 2-Analyse\ I\ (Allemand).\quad Abgabe:\ 23.09.2024$

Hinweis: Am nächsten Montag ist keine Übung, die Lösungen können (wie auch die der Serie 3) am Montag, dem 23.09.2024 zur Korrektur abgegeben werden.

Herbst/Winter '24 Prof. J. Krieger $T.\ Schmid$

(A1) Multiple Choice

a)	Gegeben sei die Menge $\Omega\subset\mathbb{R}$ mit Ω = Aussagen an.	=]2,5] \cup [3,10]. Kreuze die richtigen
	\bigcirc 2 ist Minimum von Ω .	\bigcirc 10 ist Maximum von Ω .
	\bigcirc 2 ist eine untere Schranke von	$\bigcirc \ \Omega$ ist beschränkt.
	Ω .	$\bigcirc \ \Omega$ ist eine offene Menge.
	\bigcirc 2 ist Infimum von Ω .	\bigcirc Ω ist eine geschlossene
	\bigcirc 5 ist ein Maximum von Ω .	Menge.
b)	Gegeben sei die Menge $\Omega \subset \mathbb{R}$ mit Ω richtigen Aussagen an.	$= \left\{4 + \frac{1}{n} \mid n \in \mathbb{N} \setminus \{0\}\right\}$. Kreuze die
	$\bigcirc\ 10$ ist obere Schranke für $\Omega.$	\bigcirc 4 ist Minimum von Ω .
	\bigcirc 5 ist Supremum von Ω .	$ \bigcirc \Omega$ ist nach unten beschränkt.
c)	Gegeben sei die Menge $\Omega = [\pi,4] \cap \mathbb{Q}$ als Teilmenge von $\mathbb{R}.$ Dann gilt	
(○ 4 ist Supremum aber kein	\bigcirc 4 ist das Maximum von Ω \bigcirc π ist Infimum aber kein Minimum von Ω
	Maximum von Ω $\bigcirc \pi \text{ ist das Minimum von } \Omega$	
	% ist das Millimum von 12	
d)	Betrachte die nichtleere Menge $A \subset \mathbb{R}$. Wir erinnern daran, dass Sup $A = \infty$ (Inf $A = -\infty$) gilt wenn A nicht nach oben (unten) beschränkt ist. In diesem Fall ist Sup A (bzw. Inf A) kein Element von A .	
	• Wenn Sup $A \in A$ und Inf $A \in A$,	,
		\bigcirc wahr \bigcirc falsch
	\bullet Wenn Sup $A \in A$ und Inf $A \in A,$ dann ist A abgeschlossen.	
		\bigcirc wahr \bigcirc falsch
	• Wenn Sup $A \notin A$ und Inf $A \notin A$, dann ist A offen.	
		\bigcirc wahr \bigcirc falsch
• Wenn A offen ist, dann ist Inf $A \notin A$ und Sup $A \notin A$.		
		\bigcirc wahr \bigcirc falsch
	• Wenn A abgeschlossen und beschränkt ist, dann ist Inf $A \in A$ und Sup $A \in A.$	
		\bigcirc wahr \bigcirc falsch
In	fimum und Supremum	
Bestimmen Sie für die Menge Ω das Infimum Supremum Maximum und Mini-		

(A2)

mum, falls sie existieren.

a) $\Omega = [1, 50[$ e) $\Omega = \{p^{-1} \mid p \text{ ist Primzahl}\}\$

b) $\Omega =]1, \infty[$ f) $\Omega = \{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \dots \}$

c) $\Omega = [3, 5] \cup [3, 10]$ g) $\Omega = \{x \in \mathbb{R} \mid x + x^2 < 6\}$

d) $\Omega = [-10, 5] \cap]2, 10]$ h) $\Omega = \{\sin(x) \mid x \in \mathbb{R}, \ 0 \le x < \pi/2\}$

(A3) Etwas zum Betrag ...

Zeigen Sie, dass für zwei reelle Zahlen x, y gilt:

a) |xy| = |x||y|

b) $|x+y| \le |x| + |y|$ (Dreiecksungleichung)

c) $||a| - |b|| \le |a - b|$

d) $\min(x, y) = \frac{x + y - |y - x|}{2}$

e) $\max(x, y) = \frac{x+y+|y-x|}{2}$

Hierbei ist sind die Minimums- und Maximumsfunktion definiert durch:

$$\min(x,y) = \begin{cases} x & \text{falls } x \leq y \\ y & \text{falls } x > y \end{cases}, \qquad \max(x,y) = \begin{cases} x & \text{falls } x \geq y \\ y & \text{falls } x < y \end{cases}.$$

Tipp: Fallunterscheidungen, Quadrieren.

(A4) Definition der Konvergenz

In der Vorlesung wurde Konvergenz wie folgt definiert:

Eine Folge (x_n) konvergiert gegen $x_\infty \in \mathbb{R}$ wenn für jedes (noch so kleine) $\varepsilon > 0$ ein $N = N_\varepsilon$ existiert so dass

$$|x_{\infty} - x_n| \le \varepsilon$$
 für alle $n \ge N$.

Wir nennen x_{∞} Grenzwert von (x_n) und schreiben $x_{\infty} = \lim_{n \to \infty} x_n$ oder auch $x_n \stackrel{n \to \infty}{\longrightarrow} x_{\infty}$.

Zeigen Sie mit Hilfe dieser Definition (ohne andere Kriterien zu nutzen), dass die Folge $x_n = \frac{(-1)^{n-1}}{\sqrt{n}}$ für $n \in \mathbb{N}, n \to \infty$ gegen 0 konvergiert. Hinweis: Geben Sie sich zunächst ein festes ε vor, z.B. $\varepsilon = 0.1$. Finden Sie heraus, wie sie N wählen müssen, so dass

$$|0 - x_n| \le \varepsilon$$
 für alle $n \ge N$.

Verallgemeinern Sie das Kriterium für die Wahl von N für allgemeines ε .

(A5) Grenzwerte

Bestimmen Sie die Grenzwerte dieser Folgen für $n \in \mathbb{N} \setminus \{0\}, n \to \infty$:

a)
$$x_n = \frac{4n^2 + 2n - 5}{n(n-7)}$$
 b) $x_n = \frac{-9n^4 + n - 7}{n^2(2n^3 - n^2 - 2n - 3)}$

c)
$$x_n = \frac{\sqrt{n^4 + 4n^3 + 6}}{2n^2 - 1}$$
 (Tipp: Schreiben Sie den Nenner als Wurzel um)

d)
$$x_n = \sqrt{8n^2 + n + 4} - 2\sqrt{2n^2 - 1}$$
 (Tipp: Erweitern)

e)
$$x_n = \prod_{k=2}^n \left(1 + \frac{1}{k}\right)$$
 mit $n \ge 2$ (Tipp: Schreiben Sie das Produkt aus)

2