

Prof. D. Kressner - Analysis I - (n/a)

14 Januar 2019 - Dauer: 3 Stunden

n/a

SCIPER: 999999

Drehen Sie diese Seite nicht um, bevor Sie dazu aufgefordert werden. Jedes Blatt hat eine Vorder- und eine Rückseite. Es gibt 12 Seiten, die letzten sind möglicherweise leer. Lösen Sie nicht die Heftklammern.

- Legen Sie Ihren Studentenausweis auf den Tisch.
- Es sind **keine** weiteren Unterlagen zugelassen.
- Die Nutzung eines Taschenrechners oder jedes anderen elektronischen Hilfsmittels ist während der Prüfung nicht gestattet.
- Für die Multiple Choice Fragen erhält man:
 - +3 Punkte, wenn die Antwort richtig ist,
 - 0 Punkte, wenn die Frage nicht beantwortet ist oder mehrere Möglichkeiten markiert sind,
 - -1 Punkt, wenn die Antwort falsch ist.
- Für die Wahr/Falsch Fragen erhält man:
 - +1 Punkt, wenn die Antwort richtig ist,
 - 0 Punkte, wenn die Frage nicht beantwortet ist oder mehrere Möglichkeiten markiert sind,
 - −1 Punkt, wenn die Antwort falsch ist.
- Benutzen Sie einen **Kugelschreiber mit schwarzer oder blauer Tinte** und verwenden Sie Korrekturflüssigkeit (z.B. Tipp-Ex) um bei Bedarf Ihre Antwort zu ändern.
- Falls eine Fragestellung einen Fehler enthält, darf der/die Unterrichtende die entsprechende Frage annulieren.

Respectez les consignes suivantes Observe this guidelines Beachten Sie bitte die unten stehenden Richtlinien										
choisir une réponse select an answer Antwort auswählen	ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen	Corriger une réponse Correct an answer Antwort korrigieren								
ce qu'il ne faut <u>PAS</u> faire what should <u>NOT</u> be done was man <u>NICHT</u> tun sollte										

Erster Teil, Multiple-Choice-Fragen

Markieren Sie bitte für jede Frage die Box an, die zu der richtigen Lösung gehört. Es gibt **genau** eine richtige Antwort pro Frage.

Frage 1 : Betrachte die Folge $(x_n)_{n\geq 1}$ definiert durch $x_n=\sqrt[n]{7}$ für gerade n und $x_n=\frac{1}{n^7}$ für ungerade n. Dann gilt:

- $\lim_{n \to \infty} \sup x_n = 1 \text{ und } \liminf_{n \to \infty} x_n = 0$
- $\lim_{n \to \infty} \limsup x_n = \liminf_{n \to \infty} x_n = 1$

Frage 2: Sei die Folge $(u_n)_{n\geq 0}$ definiert durch $u_0=0$ und, für $n\geq 0$, $u_{n+1}=\frac{1+2u_n}{2+u_n}$. Dann gilt:

 $(u_n)_{n\geq 0}$ ist monoton fallend

 $0 < u_n \le 1$ für jedes $n \in \mathbb{N}^*$

Frage 3 : Betrachte die Folge $(x_n)_{n\geq 1}$ definiert durch $x_n=\frac{2^{2n}}{(7n)!}$. Für $n\to\infty$,

divergiert diese Folge

- konvergiert diese Folge gegen 0
- \square konvergiert diese Folge gegen $\frac{4}{7}$
- \square konvergiert diese Folge gegen $\frac{\text{Log}(2)}{7}$

Frage 4: Betrachte die Folge $(a_n)_{n\geq 0}$ definiert durch $a_0=\frac{3}{2}$ und, für $n\geq 0$, $a_{n+1}=\frac{1}{2}+\frac{1}{2}\sqrt{8a_n-7}$. Dann gilt:

Die Folge divergiert.

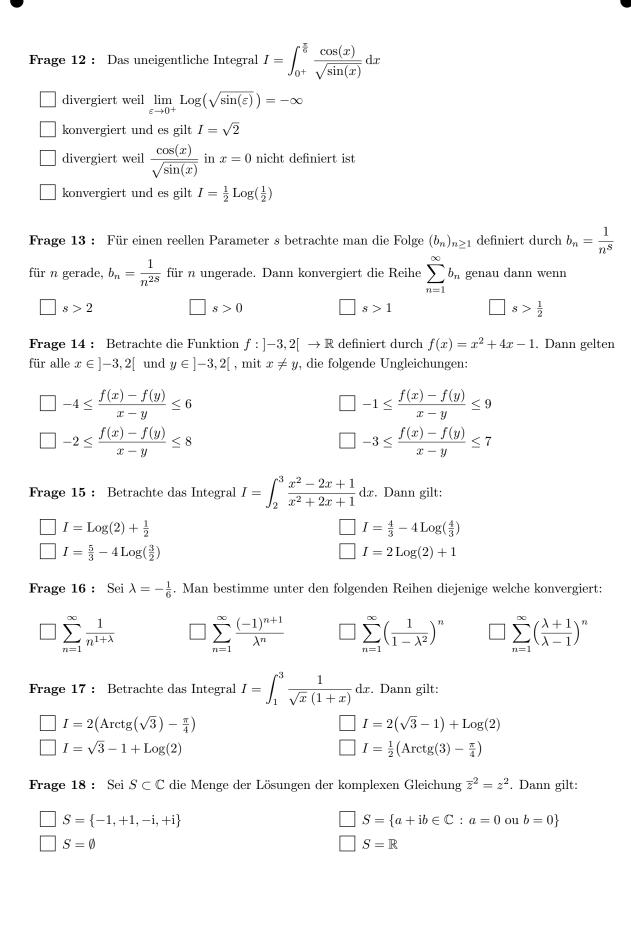
Frage 5 : Betrachte die Funktion $f: \mathbb{R} \to \mathbb{R}$ definiert durch $f(x) = x |\cos(x)|$. Dann gilt:

- \Box f ist stetig auf \mathbb{R} , aber f ist nicht differenzierbar an der Stelle x=0
- f ist nicht zwei Mal stetig differenzierbar an der Stelle x=0
- f ist unendlich oft differenzierbar auf \mathbb{R}

Frage 6:

Bertrachte die Funktion $f: \mathbb{R} \setminus \{-\frac{2}{3}\} \to \mathbb{R}$ definiert durch $f(x) = \frac{4}{2+3x}$. Dann ist die Taylor-Reihe von f um $x_0 = 2$ wie folgt:

Frage 7: Betrachte die Funktion $f: \mathbb{R} \to \mathbb{R}$ definiert durch $f(x) = e^{\frac{x^4}{4} + \frac{x^2}{2}}$. Dann gilt: \bigcap f besitzt genau ein lokales Maximum in \mathbb{R} f ist streng monoton fallend auf \mathbb{R} f ist streng monoton steigend auf \mathbb{R} f besitzt genau ein lokales Minimum in \mathbb{R} Frage 8: Betrachte für $p \in \mathbb{R}$ die Funktion $f : \mathbb{R} \to \mathbb{R}$ definiert durch $f(x) = \begin{cases} |x|^p \operatorname{Log}|x|, & x \neq 0, \\ 0 & x = 0. \end{cases}$ Dann gilt: Für $p = \frac{1}{2}$ ist f unstetig an der Stelle x = 0. Für $p = \frac{2}{3}$ ist f rechtsseitig stetig aber nicht linksseitig stetig an der Stelle x = 0. Für $p = \frac{3}{2}$ ist f nicht differenzierbar an der Stelle x = 0. Für $p = \frac{6}{5}$ ist f differenzierbar an der Stelle x = 0. Frage 9: Seien A und B zwei beschränkte nichtleere Untermengen von \mathbb{R} und sei $C \subset \mathbb{R}$ die wie folgt definierte Menge: $C = \{x - y : x \in A, y \in B\}.$ Dann gilt: \square Sup C = Sup A - Sup B \square Sup C < Sup A \square Sup C > Inf A**Frage 10 :** Das Taylor-Polynom der Ordnung 4 von $f(x) = \frac{1}{1 - \sin(x)}$ um $x_0 = 0$ ist $1 + x + x^2 + x^3 + x^4$ $1 + x + \frac{1}{2}x^2 + \frac{2}{3}x^3 + \frac{3}{4}x^4$ $1 + x + 2x^2 + 3x^3 + 4x^4$ $1 + x + x^2 + \frac{5}{6}x^3 + \frac{2}{3}x^4$ **Frage 11:** Für $m \in \mathbb{R}$ betrachtet man die Funktion $f: \mathbb{R} \to \mathbb{R}$ definiert durch $f(x) = \begin{cases} \frac{\sin^2(x)}{\log(1+2x^2)} & \text{für } x < 0, \\ m & \text{si } x = 0, \\ \frac{x+1}{2x^2+2x+1} & \text{für } x > 0. \end{cases}$ Dann gilt: Für $m = \frac{1}{2}$ ist f stetig an der Stelle x = 0. Für $m = \frac{1}{3}$ ist f rechtsseitig stetig aber nicht linksseitig stetig an der Stelle x = 0. Für $m = \frac{1}{2}$ ist f linksseitig stetig aber nicht rechtsseitig stetig an der Stelle x = 0. Für m = 1 ist f stetig an der Stelle x = 0.



Zweiter Teil, Wahr/Falsch-Fragen

Markieren Sie bitte für jede der folgenden Fragen die Box WAHR an, wenn die Aussage **immer korrekt** ist, oder die Box FALSCH, wenn sie **nicht immer korrekt** ist, d.h. wenn die Aussage manchmal falsch ist.

Frage 19 : Habe $f \in C^5(]-1,1[)$ die folgende Taylor-Entwicklung der Ordnung 4 um 0:

$$f(x) = 1 + x - x^2 + x^3 - x^4 + o(x).$$

Dann gilt $f'(0) + 3f^{(2)}(0) + f^{(3)}(0) = 1$.

WAHR FALSCH

Frage 20 : Betrachte die Folge $(x_n)_{n\geq 0}$ definiert durch $x_0=2$ und, für $n\geq 1$, $x_n=x_{n-1}-\frac{1}{n}$. Dann konvergiert $(x_n)_{n\geq 0}$.

☐ WAHR ☐ FALSCH

Frage 21 : Die Potenzreihe $\sum_{k=100}^{\infty} \frac{x^k}{k!}$ konvergiert für jedes $x \in \mathbb{R}$.

☐ WAHR ☐ FALSCH

Frage 22 : Sei $f: [-2,20] \to [0,1]$ eine stetige Funktion. Dann gibt es ein $x \in [0,1]$ so dass f(x) = x.

☐ WAHR ☐ FALSCH

Frage 23: Die Reihe $\sum_{n=1}^{\infty} \sin\left(\frac{1}{n^2}\right)$ konvergiert.

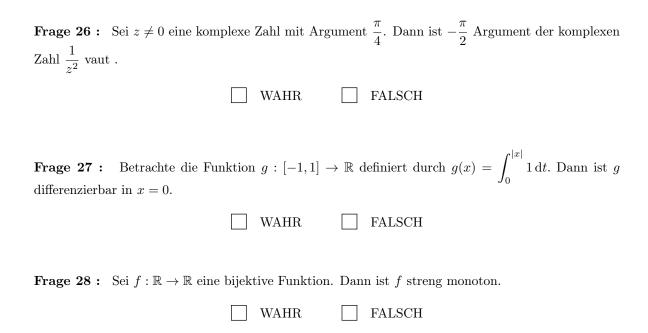
☐ WAHR ☐ FALSCH

Frage 24 : Sei $f: \mathbb{R} \to \mathbb{R}$ eine auf \mathbb{R} stetig differenzierbare Funktion, so dass die Gleichung f'(x) = 0 genau eine Lösung besitzt. Dann besitzt die Gleichung f(x) = 1 höchstens zwei verschiedene reelle Lösungen.

☐ WAHR ☐ FALSCH

Frage 25 : Sei $A \subset \mathbb{R}$ eine beschränkte Menge und $B = \{x \in \mathbb{R} : x \text{ ist obere Schranke für } A\}$. Dann gilt Inf $B \in B$.

☐ WAHR ☐ FALSCH



Dritter Teil, Offene Fragen

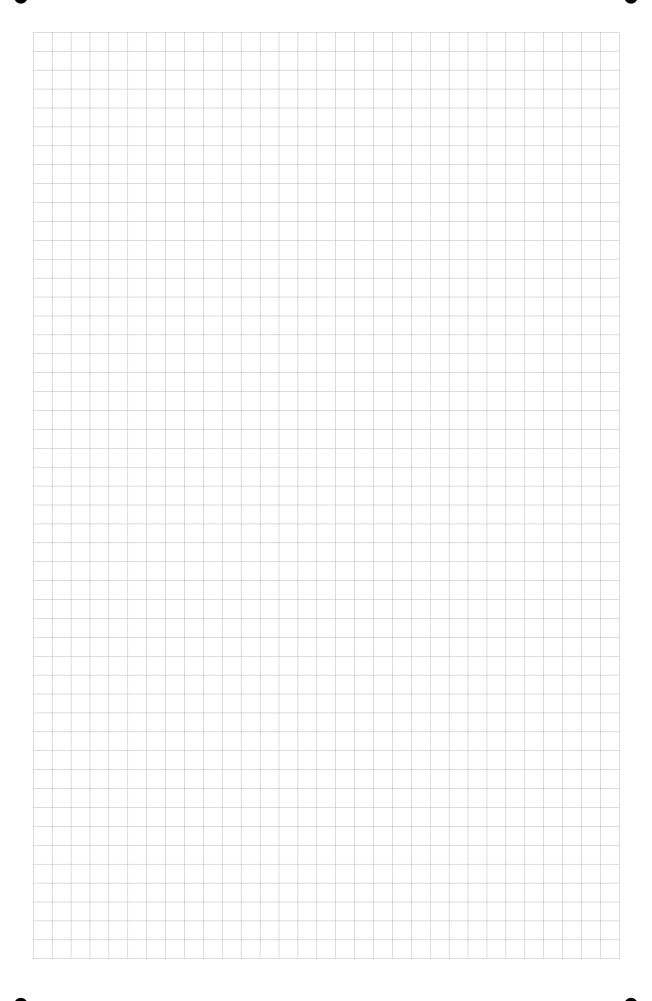
Beantworten Sie die Fragen im eingerahmten Bereich. In diesem Teil der Prüfung müssen die Lösungen begründet werden: Der Rechenweg muss erkennbar und jeder Schritt begründet sein. Die grau markierten Kästchen bitte frei lassen, sie werden für die Korrektur benötigt.

Frage 29: Diese Frage zählt 4 Punkte.

Überprüfen Sie, ob die Reihe

$$\sum_{n=1}^{\infty} \frac{(n+1)^{n-1}}{(-n)^n}$$

konvergiert.

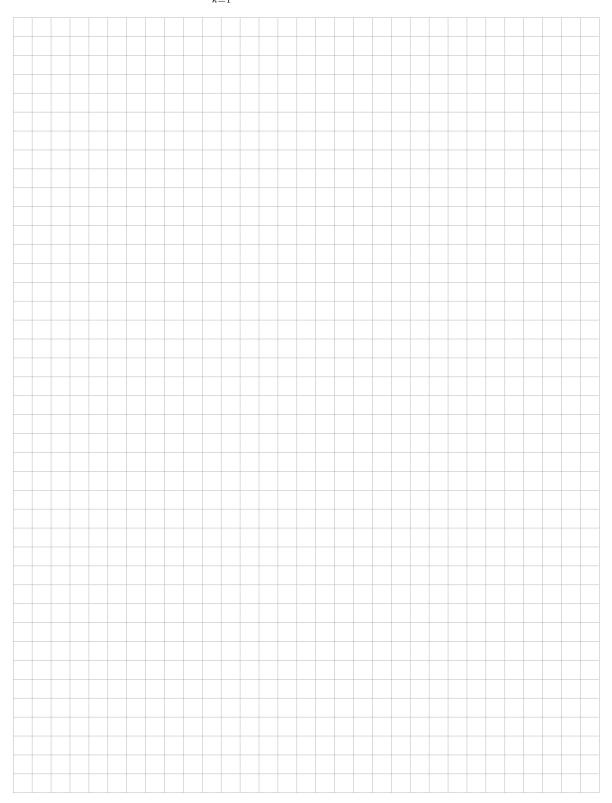


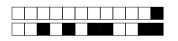
Frage 31: Diese Frage zählt 6 Punkte.

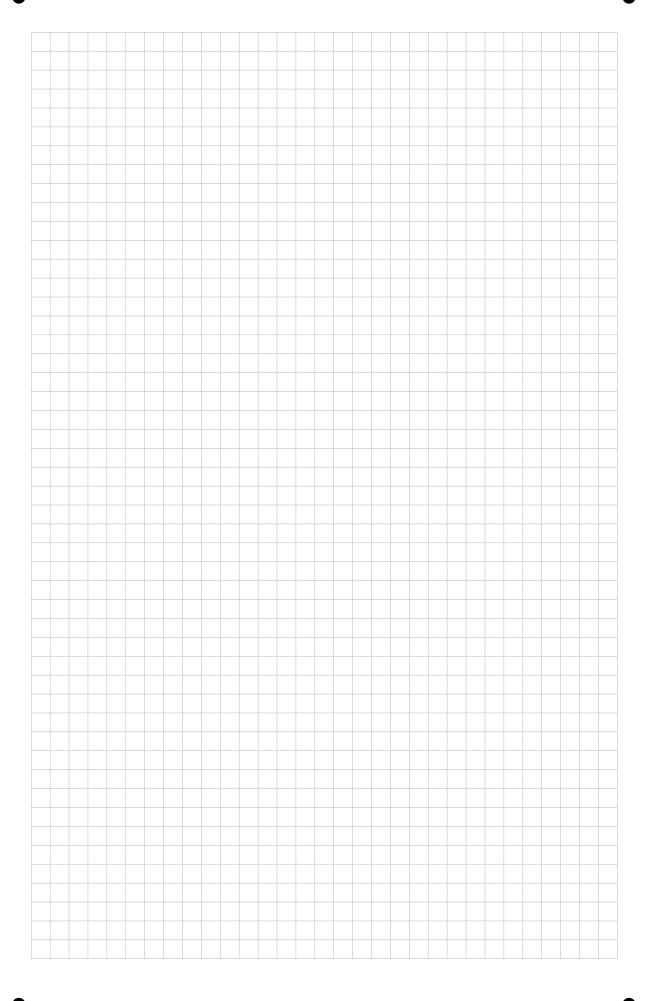
0	1	2	3	4	5		Hier nicht schreiben.
---	---	---	---	---	---	--	-----------------------

Zeigen Sie per Induktion, dass

$$\sum_{k=1}^{n} (k+k^2) = \frac{1}{3}n(n+1)(n+2).$$







Frage 33: Diese Frage zählt 6 Punkte.

Sei $f \in C^3(]0,1[).$ Zeigen Sie die folgende Aussage: Für $x_0 \in]0,1[$ gilt

$$\lim_{h \to 0} \frac{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}{h^2} = f''(x_0).$$

