

Prof. J. Krieger, T.Schmid Musterlösung Extraübung Herbst 2024

Dauer: XXX Minuten

1

Student 1

SCIPER: 999000

Warten Sie mit dem Umblättern der Seite, bis die Prüfung begonnen hat. Dieses Dokument ist beidseitig bedruckt und enthält insgesamt 6 Seiten, wobei die letzten Seiten leer sein können. Bitte nicht heften.

- Posez votre carte d'étudiant sur la table.
- Aucun document n'est autorisé.
- L'utilisation d'une calculatrice et de tout outil électronique est interdite pendant l'épreuve.
- Pour les questions à **choix multiple**, on comptera:
 - +3 points si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - −1 point si la réponse est incorrecte.
- Pour les questions de type **vrai-faux**, on comptera:
 - +1 point si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - -1 point si la réponse est incorrecte.
- Utilisez un stylo à encre noire ou bleu foncé et effacez proprement avec du correcteur blanc si nécessaire.
- Si une question est erronée, l'enseignant se réserve le droit de l'annuler.

Respectez les consignes suivantes Observe this guidelines Beachten Sie bitte die unten stehenden Richtlinien		
choisir une réponse select an answer Antwort auswählen	ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen	Corriger une réponse Correct an answer Antwort korrigieren
ce qu'il ne faut <u>PAS</u> faire what should <u>NOT</u> be done was man <u>NICHT</u> tun sollte		

Ditter Teil, offene Fragen

Beantworten Sie Ihre Fragen in dem dafür vorgesehenen Raum. Ihre Antwort muss sorgfältig begründet sein, alle Schritte Ihrer Argumentation müssen in Ihrer Antwort enthalten sein.

Frage 1: Diese Frage gibt X Punkte.

Zeigen Sie durch vollständige Induktion, dass für alle $n \in \mathbb{N}$ gilt

$$\sum_{j=1}^{n+1} j \, 2^j = n \, 2^{n+2} + 2.$$

Lösung:

Wir wollen mit der vollstänidgen Induktion zeigen, dass "ur $n \in \mathbb{N}$ gilt

$$\sum_{j=1}^{n+1} j \, 2^j = n \, 2^{n+2} + 2.$$

Wir beginnen mit dem ersten Schritt, dem Induktionsanfang. Das heisst wir zeigen, dass die Gleichung wahr ist wenn n = 0. Im Fall n = 0 gilt

$$\sum_{j=1}^{1} j2^{j} = 1 \cdot 2^{1} = 0 + 2.$$

Jetzt gehen wir zum Induktionsschritt.

Nehmen wir an, dass $sum_{j=1}^{n+1}j2^j=n2^{n+2}+2$ für $n\geq 0$ wahr ist (Induktionsvoraussetzung). Dann wollen wir zeigen die Formel gilt für n+1, d. h. es gilt $sum_{j=1}^{n+2}j2^j=(n+1)2^{n+3}+2$ (Induktionsbehauptung). Es folgt

$$\sum_{j=1}^{n+2} j 2^j = \sum_{j=1}^{n+1} j 2^j + (n+2)2^{n+2}$$

$$= n2^{n+2} + 2 + n2^{n+2} + 2 \cdot 2^{n+2}$$

$$= 2^{n+2}(n+n+2) + 2$$

$$= (2n+2)2^{n+2} + 2$$

$$= (n+1)2^{n+3} + 2,$$

was zu zeigen war.

(Genauere Erklärungen der Rechenschritte: Wir schreiben zuerst die linke Seite der Gleichung mit n+1 und zerlegen ihn in zwei Teile: Die Summe, die wir aus der Induktionsbehauptung kennen, $sum_{j=1}^{n+2}j2^{j}$, und den letzten Term, $(n+2)2^{n+2}$, den wir erhalten, indem wir für j=n+2 einetzen. Wir verwenden die Induktionsvoraussetzung, $sum_{j=1}^{n+1}j$, $2^{j}=n$, $2^{n+2}+2$, und ordnen dann die Terme um, um $(n+1)2^{n+3}+2$ zu erhalten).

Frage 2: Diese Frage gibt X Punkte.

Geben Sie ein Beispiel für eine Folge $(a_n)_{n\geq 1}$, bei der alle Elemente $a_n\geq 0$ sind, die nicht beschränkt ist und die nicht gegen $+\infty$ geht, wenn $n\to +\infty$ geht. Begründen Sie Ihre Antwort.

Lösung:

Wir suchen nach einem Beispiel für eine nicht beschränkte Folge $(a_n)_{n\geq 1}$, fr die $a_n\geq 0$ und die nicht gegen $+\infty$ geht, wenn $n\to +\infty$.

Erinnern wir uns zunächst an die Definitionen: Eine Folge ist beschränkt, wenn es $m, M \in \mathbb{R}$ gibt, so dass für jedes $n \in \mathbb{N}$ gilt $m \le a_n \le M$. Da $a_n \ge 0$ für alle $n \in \mathbb{N}$ ist, kann m = 0 gewählt werden und $(a_n)_n$ ist zwangsläufig nach unten beschränkt (durch m = 0).

Eine divergente Folge geht gegen $+\infty$, wenn alle $\tilde{M}in\mathbb{R}$, es ein $Nin\mathbb{N}$ gibt, so dass für alle $n \geq N$ folgt $a_n > \tilde{M}$.

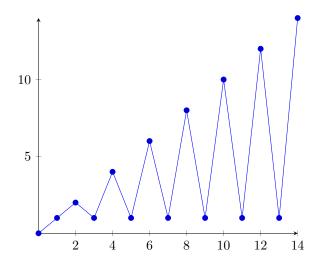
Da wir also eine Folge $(a_n)_n$ suchen, die positiv $(a_n \ge 0)$, unbeschränkt und nicht gegen ∞ geht, wollen wir die folgenden Eigenschaften für a_n :

- (a) $a_n \geq 0$ für alle $n \in \mathbb{N}$
- (b) für alle $M \in \mathbb{R}$, gibt es ein $n \in \mathbb{N}$ mit $a_n > M$ (nicht beschränkt)
- (c) Es gibt $\tilde{M} \in \mathbb{R}$ so, dass für alle $N \in \mathbb{N}$ gibt es ein $n \geq N$ mit $a_n < \tilde{M}$ (geht nicht gegen $+\infty$)

Diese Eigenschaften erfüllt jede (positive) Folge, deren Folgenglieder abwecheselnd (gerade/ungerade) eine gegen $+\infty$ gehende Teilfolge einerseits und eine beschränkte Teilfolge andererseits bilden. Zum Beispiel die Folge

$$a_n = \begin{cases} 1 & \text{falls} n \text{ ungerade ist} \\ n & \text{falls} n \text{ gerade ist} \end{cases}$$

- (a) Die Folge $(a_n)_n$ ist positiv, da $a_n \ge 0$ für alle n.
- (b) Die Folge $(a_n)_n$ ist nicht beschränkt. Für alle $M \in \mathbb{R}^*$ sei $n = 2\lfloor |M| \rfloor$. Dann ist n gerade und $a_n = 2\lfloor |M| \rfloor > M$. Falls M = 0, so kann man einfach n = 2 nehmen.
- (c) Die Folge $(a_n)_n$ geht nicht gegen ∞ . In der Tat nimmt man zum Beispiel M=10. Sei dann $N\geq 0$ und wir suchen ein $n\geq N$ mit $a_n\leq 10$. Für n=2N+1 gilt n>N uns da n somit ungerade ist folgt auch $a_n=1<10$.



Catalogue

Catalogue

Catalogue