

Musterlösung 7 – Analyse I (Allemand)

Herbst/Winter '24 Prof. J. Krieger

T. Schmid

(A1) Multiple Choice

a) $\bar{z}=2-2i$. Durch Umwandlung in die Polardarstellung und mit der Formel von Moivre erhalten wir

$$\left(\frac{1-\sqrt{3}i}{1+i}\right)^3 = \left(\frac{1-\sqrt{3}-i(1+\sqrt{3})}{2}\right)^3$$

$$= \left(\sqrt{2}(\cos(\frac{\pi}{12})+i\sin(\frac{\pi}{12})\right)^3 = 2\sqrt{2}\cos(\frac{\pi}{4})+i\sin(\frac{\pi}{4})$$

$$= 2+2i$$

- b) falsch. Gegenbeispiel $f = \sin(2\pi x)$ ist auf diesen Intervallen surjektiv aber nicht injektiv.
- c) falsch. Gegenbeispiel $f = \frac{1}{\pi} \arcsin(x)$.
- d) falsch. Eine monoton fallende Funktion kann über ein Intervall konstant sein und somit kann es x_1, x_2 geben, sodass $f(x_1) = f(x_2)$, aber $x_1 \neq x_2$.
- e) falsch. Gegenbeispiel: Es seien die Mengen $E = G = H = \mathbb{R}$ und $F = [0, \infty[$ gegeben. Die Funktionen $f(x) = x^2$ und g(x) = x sind mit dieser Definition surjektiv. Wir können ein $y = -1 \in H$, wählen und finden $x = -1 \in G$, sodass g(x) = y. Aber wir können kein $w \in E$ finden, sodass

$$f(w) = w^2 = -1 = x.$$

Somit ist die Komposition nicht surjektiv.

- f) richtig. Aus der Injektivität von g folgt aus $g(f(x_1)) = g(f(x_2))$, dass $f(x_1) = f(x_2)$. Aus der Injektivität von f folgt dann wiederum, dass $x_1 = x_2$, so dass die Komposition ebenfalls injektiv ist.
- g) richtig. Daf und gbijektiv sind und der Wertebereich von fgleich dem Definitionsbereich von g ist.

(A2) Komplexe Zahlen

- (1) Lösen Sie nach $z \in \mathbb{C}$ auf. Falls mehrere Lösungen existieren, geben Sie alle an.
- a) $e^z=-3-2{\rm i}$ Die Lösungen von $e^z=-3-2{\rm i}$ sind gegeben durch $z={\rm Log}\,(-3-2{\rm i})$. Diese Gleichung ist erfüllt für

$$z_k = \text{Log} \left[-3 - 2i \right] + i(\arg(-3 - 2i) + 2\pi k), \quad k \in \mathbb{Z}.$$

In Polarform ist -3-2i gegeben durch

$$-3-2\mathrm{i} = \rho e^{\mathrm{i}\,\varphi}, \text{ wobei } \rho = |-3-2\,\mathrm{i}| = \sqrt{13} \text{ und } \varphi = \arccos\left(\frac{-3}{\rho}\right) = \arccos\left(\frac{-3}{\sqrt{13}}\right)$$

Es gilt $arg(-3-2i) = \varphi$, und daher sind alle Lösungen gegeben durch

$$z_k = \operatorname{Log}(\sqrt{13}) + i\left(\operatorname{Arccos}\left(\frac{-3}{\sqrt{13}}\right) + 2\pi k\right)$$

$$= \frac{\operatorname{Log}(13)}{2} + i\left(\pi - \operatorname{Arccos}\left(\frac{3}{\sqrt{13}}\right) + 2\pi k\right)$$

$$= \frac{\operatorname{Log}(13)}{2} + i\left(-\operatorname{Arccos}\left(\frac{3}{\sqrt{13}}\right) + \pi(2k+1)\right), \quad k \in \mathbb{Z}.$$

Es gibt also unendlich viele Lösungen dieser Gleichung! Die Lösungsmenge lautet

$$z \in \left\{ \frac{\text{Log}(13)}{2} + i \left(-\operatorname{Arccos}\left(\frac{3}{\sqrt{13}}\right) + 2k\pi \right) \mid k \in \mathbb{Z} \right\}$$

b) $3^z = 9$

Wir schreiben 3^z mit der Exponential- und Logarithmusfunktion als

$$3^z = \left(e^{\text{Log}(3)}\right)^z = e^{\text{Log}(3) \cdot z}$$

Also folgt

$$3^{z} = 9 \Rightarrow e^{z \operatorname{Log}(3)} = 9$$
$$\Rightarrow z \operatorname{Log}(3) = \operatorname{Log}(9) + i2\pi k, \quad k \in \mathbb{Z}:$$

Somit ist

$$z = \frac{\operatorname{Log}(9) + i2\pi k}{\operatorname{Log}(3)}$$

$$= \frac{\operatorname{Log}(3 \cdot 3)}{\operatorname{Log}(3)} + i\frac{2\pi k}{\operatorname{Log}(3)}, \quad k \in \mathbb{Z}$$

$$= \frac{2\operatorname{Log}(3)}{\operatorname{Log}(3)} + i\frac{2\pi k}{\operatorname{Log}(3)}, \quad k \in \mathbb{Z}$$

Es gibt also unendlich viele Lösungen dieser Gleichung und die Lösungsmenge lautet

$$z \in \left\{ 2 + \mathrm{i} \frac{2\pi k}{\mathrm{Log}(3)} \mid k \in \mathbb{Z} \right\}$$

c) $\cos z = \sqrt{2}$

Wir benutzen die Darstellung $\cos z = \frac{e^{iz} + e^{-iz}}{2}$. Damit folgt

$$\cos z = \sqrt{2} \iff e^{\mathrm{i}z} + e^{-\mathrm{i}z} = 2\sqrt{2}$$

$$\iff e^{\mathrm{i}z}(e^{\mathrm{i}z} + e^{-\mathrm{i}z}) = e^{\mathrm{i}z}2\sqrt{2}$$

$$\iff e^{2\mathrm{i}z} + \underbrace{e^{\mathrm{i}z-\mathrm{i}z}}_{e^0 = 1} - e^{\mathrm{i}z}2\sqrt{2} = 0$$

$$\iff e^{2\mathrm{i}z} - 2\sqrt{2}e^{\mathrm{i}z} + 1 = 0$$

$$\iff w^2 - 2\sqrt{2}w + 1 = 0.$$

Die Lösungen dieser quadratischen Gleichung sind durch die Mitternachtsformel gegeben durch

$$w = \frac{2\sqrt{2} \pm \sqrt{(2\sqrt{2})^2 - 4}}{2} = \sqrt{2} \pm 1.$$

Die Rücksubstitution ergibt somit $e^{iz} = w = (\sqrt{2} \pm 1)$. Damit erhalten wir

$$iz = Log(\sqrt{2} \pm 1)$$

= $Log(\sqrt{2} \pm 1) + i2\pi k$, $k \in \mathbb{Z}$

woraus das Resultat folgt

$$z = -i(\operatorname{Log}(\sqrt{2} \pm 1) + i2\pi k) = 2k\pi - i\operatorname{Log}(\sqrt{2} \pm 1), \quad k \in \mathbb{Z}.$$

Auch hier gibt wieder unendlich viele Lösungen und die Lösungsmenge lautet

$$z \in \left\{ 2\pi k - \mathrm{i} \operatorname{Log} \left(\sqrt{2} \pm 1\right) \mid k \in \mathbb{Z} \right\}$$

d)
$$z^3 = 2e^{3+i\frac{\pi}{2}}$$

$$z^3 = 2e^{3+i\frac{\pi}{2}} \Leftrightarrow z^3 = 2e^3e^{i\frac{\pi}{2}}$$

In Polarform haben wir

$$z^3 = 2e^3 e^{i\frac{\pi}{2}} \stackrel{!}{=} \rho e^{i\varphi} \Rightarrow \rho = 2e^3, \ \varphi = \frac{\pi}{2}$$

Laut der Formel von Moivre sind die n Zahlen

$$\omega_k = \sqrt[n]{\rho} \left[\cos \left(\frac{\varphi + 2\pi k}{n} \right) + \mathrm{i} \sin \left(\frac{\varphi + 2\pi k}{n} \right) \right] = \sqrt[n]{\rho} e^{\mathrm{i} \left(\frac{\varphi + 2\pi k}{n} \right)}, \ k = 0, 1, \dots n - 1$$

allesamt n-te Wurzeln von $\omega=\rho\left(\cos\varphi+\mathrm{i}\sin\varphi\right)=\rho e^{i\varphi}$. Wir benutzen diese Formel und finden die drei dritten Wurzeln von $2e^{3+\mathrm{i}\frac{\pi}{2}}$:

$$z_k = \sqrt[3]{2e^3} e^{\mathrm{i}\left(\frac{\frac{\pi}{2} + 2\pi k}{3}\right)}$$

$$\begin{split} z_0 &= \sqrt[3]{2}e \cdot e^{\mathrm{i}\left(\frac{\pi}{2}\right)} = \sqrt[3]{2}e^1 e^{\mathrm{i}\frac{\pi}{6}}, \\ z_1 &= \sqrt[3]{2}e \cdot e^{\mathrm{i}\left(\frac{\pi}{2} + 2\pi\right)} = \sqrt[3]{2}e^1 e^{\mathrm{i}\frac{5\pi}{6}}, \\ z_2 &= \sqrt[3]{2}e \cdot e^{\mathrm{i}\left(\frac{\pi}{2} + 4\pi\right)} = \sqrt[3]{2}e^1 e^{\mathrm{i}\frac{3\pi}{2}} = \sqrt[3]{2}e^1 e^{-\mathrm{i}\frac{\pi}{2}}. \end{split}$$

Die Lösungsmenge lautet also

$$z \in \{z_0, z_1, z_2\} = \left\{\sqrt[3]{2}e^1 e^{\mathrm{i}\frac{\pi}{6}}, \sqrt[3]{2}e^1 e^{\mathrm{i}\frac{5\pi}{6}}, \sqrt[3]{2}e^1 e^{-\mathrm{i}\frac{\pi}{2}}\right\}$$

e)
$$(z+3i)^5 = \frac{\sqrt{3}}{2} + i\frac{1}{2}$$

Wir substituieren w=z+3i und betrachten wie in Aufgabe d) die Polarform von w^5 .

$$\begin{split} w^5 &= \frac{\sqrt{3}}{2} + \mathrm{i} \frac{1}{2} \stackrel{!}{=} \rho \left(\cos \varphi + \mathrm{i} \sin \varphi \right) \\ \Rightarrow \rho &= \left| \frac{\sqrt{3}}{2} + \mathrm{i} \frac{1}{2} \right| = 1, \ \varphi = \operatorname{Arccos} \left(\frac{\sqrt{3}}{2} \right) = \frac{\pi}{6}. \end{split}$$

Nach der Formel von Moivre sind die fünf fünften Wurzeln von $\frac{\sqrt{3}}{2}+i\frac{1}{2}$ gegeben durch :

$$w_k = \sqrt[5]{1}e^{\frac{\pi}{6} + 2\pi k \over 5}, \ k = 0, 1, 2, 3, 4.$$

$$\begin{split} w_0 &= e^{\mathrm{i}\left(\frac{\pi}{6}\right)} = e^{\mathrm{i}\frac{\pi}{30}} \\ w_1 &= e^{\mathrm{i}\left(\frac{\pi}{6} + 2\pi\right)} = e^{\mathrm{i}\frac{13\pi}{30}} \\ w_2 &= e^{\mathrm{i}\left(\frac{\pi}{6} + 4\pi\right)} = e^{\mathrm{i}\frac{5\pi}{6}} \\ w_3 &= e^{\mathrm{i}\left(\frac{\pi}{6} + 6\pi\right)} = e^{\mathrm{i}\frac{37\pi}{30}} = e^{-\mathrm{i}\frac{23\pi}{30}} \\ w_4 &= e^{\mathrm{i}\left(\frac{\pi}{6} + 8\pi\right)} = e^{\mathrm{i}\frac{49\pi}{30}} = e^{-\mathrm{i}\frac{11\pi}{30}} \end{split}$$

Somit erhalten wir für z die Lösungsmenge (Rücksubstitution!):

$$z \in \left\{ e^{\mathrm{i} \frac{\pi}{30}} - 3\mathrm{i}, e^{\mathrm{i} \frac{13\pi}{30}} - 3\mathrm{i}, e^{\mathrm{i} \frac{5\pi}{6}} - 3\mathrm{i}, e^{-\mathrm{i} \frac{23\pi}{30}} - 3\mathrm{i}, e^{-\mathrm{i} \frac{11\pi}{30}} - 3\mathrm{i} \right\}$$

Leider sind die Ausdrücke durch die Subtraktion von 3i nicht mehr in einer Standardform. Durch Umformen des Exponentialteils in die kartesische Form können wir dies beheben und erhalten

$$z \in \left\{ \cos\left(\frac{\pi}{30}\right) + i\left(\sin\left(\frac{\pi}{30}\right) - 3\right), \cos\left(\frac{13\pi}{30}\right) + i\left(\sin\left(\frac{13\pi}{30}\right) - 3\right), -\frac{\sqrt{3}}{2} - i\frac{5}{2}, \cos\left(\frac{23\pi}{30}\right) - i\left(\sin\left(\frac{23\pi}{30}\right) + 3\right), \cos\left(\frac{11\pi}{30}\right) - i\left(\sin\left(\frac{11\pi}{30}\right) + 3\right) \right\}$$

Für diese Unformung verwenden wir folgende Eigenschaften von e, \sin, \cos :

$$e^{iy} = \cos y + i \sin y \ \forall y \in \mathbb{R}, \quad \cos(-z) = \cos(z), \quad \sin(-z) = -\sin(z) \ \forall z \in \mathbb{C}.$$

(2) Existiert ein $n \in \mathbb{N}$ für dass $(1 + i\sqrt{3})^n$ rein imaginär ist?

Nein, $(1+i\sqrt{3})^n = 2^n(\cos(n\frac{\pi}{3}) + i\sin(n\frac{\pi}{3}))$. Damit dieser Ausdruck rein imaginär ist muss $\cos(n\frac{\pi}{3}) = 0$ sein. Das heisst $n\frac{\pi}{3} = \frac{\pi}{2} + k\pi$ muss für ein $k \in \mathbb{Z}$ gelten. Diese Gleichung kann aber für kein k erfüllt werden.

Existiert ein $n \in \mathbb{N}$ für dass $(1 + i\sqrt{3})^n$ reell ist?

Ja, es muss gelten $\sin(n\frac{\pi}{3})=0$, das heisst $n\frac{\pi}{3}=k\pi$ für $k\in\mathbb{Z}$. Dies ist für alle n=3k erfüllt.

(A3) Cosinus und Sinus

a) Zeigen Sie mit Hilfe der Reihendarstellung von $\exp(x), \sin(x), \cos(x)$ die folgenden Identitäten

$$\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}, \quad \cos(x) = \frac{e^{ix} + e^{-ix}}{2}.$$

Wir zeigen die Identität für die Sinusfunktion, die rechte Identität folgt nahezu gleich. Es gilt

$$\frac{e^{ix} - e^{-ix}}{2i} = \frac{\sum_{k=0}^{\infty} \frac{(ix)^k}{k!} - \sum_{k=0}^{\infty} \frac{(-ix)^k}{k!}}{2i}$$

$$= \sum_{k=0}^{\infty} \frac{\frac{(ix)^k - (-1)^k (ix)^k}{k!}}{2i}$$

$$= \sum_{k=0}^{\infty} \frac{(ix)^k (1 - (-1)^k)}{2ik!}$$

$$\stackrel{*}{=} \sum_{k=0}^{\infty} \frac{2(ix)^{2k+1}}{2i(2k+1)!} = \sum_{k=0}^{\infty} \frac{(i)^{2k+1} x^{2k+1}}{i(2k+1)!}$$

$$= \sum_{k=0}^{\infty} \frac{(i)^{2k} x^{2k+1}}{(2k+1)!} = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!} = \sin(x)$$

Das Gleichheitszeichen an der Stelle * ergibt sich daraus, dass für alle k gerade $(1-(-1)^k)=0$ gilt, während für k ungerade $1-(-1)^k=2$ gilt.

b) Verwenden Sie das Ergebnis aus a),

$$\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}, \quad \cos(x) = \frac{e^{ix} + e^{-ix}}{2}$$

um folgende Identitäten zu beweisen:

(i)
$$\sin^2(x) + \cos^2(x) = 1$$

Es gilt

$$\cos^{2}(x) = \frac{\left(e^{ix}\right)^{2} + 2e^{ix}e^{-ix} + \left(e^{-ix}\right)^{2}}{4} = \frac{\left(e^{ix}\right)^{2} + 2 + \left(e^{-ix}\right)^{2}}{4}$$

$$\sin^2(x) = \frac{\left(e^{ix}\right)^2 - 2e^{ix}e^{-ix} + \left(e^{-ix}\right)^2}{-4} = -\frac{\left(e^{ix}\right)^2 - 2 + \left(e^{-ix}\right)^2}{4}$$

und somit

$$\cos^2(x) + \sin^2(x) = \frac{\left(e^{\mathrm{i}x}\right)^2 + 2 + \left(e^{-\mathrm{i}x}\right)^2}{4} - \frac{\left(e^{\mathrm{i}x}\right)^2 - 2 + \left(e^{-\mathrm{i}x}\right)^2}{4} = \frac{2}{4} + \frac{2}{4} = 1.$$

(ii) $2\sin(x)\cos(x) = \sin(2x)$

Wir erhalten:

$$2\sin(x)\cos(x) = 2\frac{e^{ix} - e^{-ix}}{2i} \cdot \frac{e^{ix} + e^{-ix}}{2} = \frac{e^{2ix} - e^{-2ix}}{2i} = \sin(2x).$$

(A4) Hyperbolische Funktionen

Zeigen Sie, dass folgende Identitäten für alle $x,y\in\mathbb{R}$ gelten:

a) $\cosh^2(x) - \sinh^2(x) = 1$

Wir erhalten direkt

$$\cosh^{2}(x) - \sinh^{2}(x) = \left(\frac{e^{x} + e^{-x}}{2}\right)^{2} - \left(\frac{e^{x} - e^{-x}}{2}\right)^{2}$$

$$= \frac{e^{2x} + 2e^{x}e^{-x} + e^{-2x} - e^{2x} + 2e^{x}e^{-x} - e^{-2x}}{4}$$

$$= \frac{e^{2x} + 2 + e^{-2x} - e^{2x} + 2 - e^{-2x}}{4} = 1.$$

b) $\sinh(x+y) = \sinh(x)\cosh(y) + \cosh(x)\sinh(y)$

$$\begin{split} \sinh(x)\cosh(y) + \cosh(x)\sinh(y) &= \left(\frac{e^x - e^{-x}}{2}\right) \left(\frac{e^y + e^{-y}}{2}\right) + \left(\frac{e^x + e^{-x}}{2}\right) \left(\frac{e^y - e^{-y}}{2}\right) \\ &= \frac{e^{x+y} + e^{x-y} - e^{y-x} - e^{-(x+y)}}{4} \\ &+ \frac{e^{x+y} - e^{x-y} + e^{y-x} - e^{-(x+y)}}{4} \\ &= \frac{e^{x+y} - e^{-(x+y)}}{2} = \sinh(x+y). \end{split}$$

c)
$$\tanh(x+y) = \frac{\tanh x + \tanh y}{1 + \tanh x \tanh y}$$

Beachte, dass

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^x(e^x - e^{-x})}{e^x(e^x + e^{-x})} = \frac{e^{2x} - 1}{e^{2x} + 1},$$

und somit

$$\begin{split} \frac{\tanh x + \tanh y}{1 + \tanh x \tanh y} &= \frac{\frac{e^{2x} - 1}{e^{2x} + 1} + \frac{e^{2y} - 1}{e^{2y} + 1}}{1 + \left(\frac{e^{2x} - 1}{e^{2x} + 1}\right) \left(\frac{e^{2y} - 1}{e^{2y} + 1}\right)} \\ &= \frac{(e^{2x} - 1)(e^{2y} + 1) + (e^{2x} + 1)(e^{2y} - 1)}{(e^{2x} + 1)(e^{2y} + 1) + (e^{2x} - 1)(e^{2y} - 1)} \\ &= \frac{2e^{2x + 2y} - 2}{2e^{2x + 2y} + 2} = \frac{e^{2(x + y)} - 1}{e^{2(x + y)} + 1} = \tanh(x + y). \end{split}$$

(A5) Definitionsbereiche

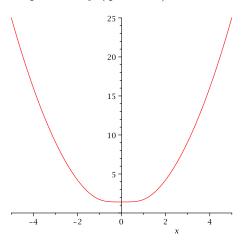
Sei die Funktion $f: E \to \mathbb{R}$ mit $E \subset \mathbb{R}$ gegeben durch

$$x \mapsto f(x) = \sqrt{2 + x^4}.$$

a) Bestimmen Sie den größtmöglichen Definitionsbereich D(f) = E der Funktion f sowie das Bild f(E).

Wir haben den Definitionsbereich $D(f) = \mathbb{R}$ und das Bild $Bild(f) = [\sqrt{2}, \infty[$.

b) Zeichnen Sie den Graphen von f (qualitativ).



c) Bestimmen Sie das Urbild $f^{-1}([0,5])$.

$$f^{-1}([0,5]) = [-\sqrt[4]{23}, \sqrt[4]{23}].$$

d) Seien $g(x) = \frac{1}{x-1}$, $h(x) = x^2$. Berechnen Sie die Verknüpfung $t(x) = (g \circ h \circ f)(x)$.

$$t(x) = (g \circ h \circ f)(x) = g(h(f(x))) = g(h(\sqrt{2+x^4}))$$
$$= g((\sqrt{2+x^4})^2) = g(2+x^4) = \frac{1}{(2+x^4)-1} = \frac{1}{x^4+1}.$$

e) Sei zusätzlich die Funktion s gegeben durch $x \mapsto s(x) = e^x = \exp(x)$. Bestimmen Sie den Definitionsbereich $D(f \circ s^{-1})$. Berechnen Sie anschliessend $(f \circ s^{-1})(x)$.

 $Wir\; haben\; D(f\circ s^{-1})=]0,\infty[\; und$

$$(f \circ s^{-1})(x) = f(s^{-1}(x)) = f(\text{Log}(x)) = \sqrt{2 + (\text{Log}(x))^4}$$

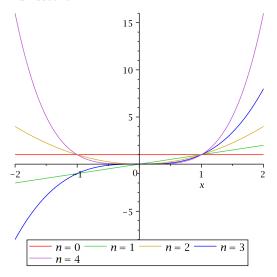
(A6) Injektivität und Surjektivität

Geben Sie zu jeder der folgenden Funktionen $f:E\to\mathbb{R}$ an, ob sie injektiv, surjektiv oder bijektiv ist und ob sie ein Infimum, Supremum, Minimum- oder Maximumsstellen besitzt. Tipp: Zeichnen Sie den Graph der Funktion, um eine bessere Vorstellung zu erhalten.

- a) $f(x) = x^n$, $E = \mathbb{R}$, für n = 0, 1, 2, 3
 - $\underline{n=0}$ Für n=0 ist die Funktion gegeben durch $f(x)=x^0=1$. Sie ist weder injektiv, noch surjektiv. Weiter gilt inf = 1, sup = 1 und jedes x ist Minimum- und Maximumsstelle.
 - $\underline{n=1}$ Für n=1 ist die Funktion gegeben durch $f(x)=x^1=x$. Sie ist bijektiv, hat kein Infimum und kein Supremum und keine Minimum-und Maximumsstellen.
 - $\underline{n=2}$ Für n=2 ist die Funktion gegeben durch $f(x)=x^2$. Sie ist nicht injektiv, da für $x\in\mathbb{R}$ gilt $(-x)^2=x^2$, und auch nicht surjektiv, da keine negativen Werte angenommen werden. Weiter ist inf = 0, und es gibt kein Supremum. x=0 ist die Minimumsstelle, und es existiert keine Maximumsstelle.

6

• $\underline{n=3}$ Für n=3 ist die Funktion gegeben durch $f(x)=x^3$. Sie ist bijektiv, hat kein Infimum und kein Supremum und keine Minimum-und Maximumsstellen.



- b) $f(x) = x^n$, E =]0, 3], für n = 0, 1, 2, 3
 - $\underline{n} = 0$ Die Funktion ist gegeben durch $f(x) = x^0 = 1$. Sie ist weder injektiv, noch surjektiv; inf = 1, sup = 1; jedes x ist Minimum- und Maximumsstelle.
 - $\underline{n=1}$ Die Funktion ist gegeben durch f(x)=x. Sie ist injektiv, aber nicht surjektiv; inf = 0, sup = 3; keine Minimumsstelle, x=3 Maximumsstelle.
 - $\underline{n=2}$ Die Funktion ist gegeben durch $f(x)=x^2$. Sie ist injektiv, aber nicht surjektiv; inf = 0, sup = $3^2=9$; keine Minimumsstelle, x=3 Maximumsstelle.
 - n=3 Die Funktion ist gegeben durch $f(x)=x^3$. Sie ist injektiv, aber nicht surjektiv; inf = 0, sup = $3^3=27$; keine Minimumsstelle, x=3 Maximumsstelle.

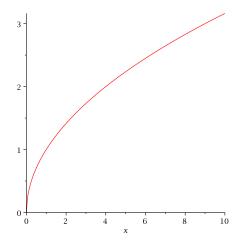
c)
$$f(x) = \sqrt{x}$$
, $E = D(f)$.

Der Definitionsbereich ist $E = D(f) = [0, \infty[$.

Die Funktion ist injektiv, aber nicht surjektiv.

(es werden keine negativen Werte angenommen)

Weiter ist $\inf = 0$, kein Supremum; x = 0 ist Minimumsstelle, keine Maximumsstellen.

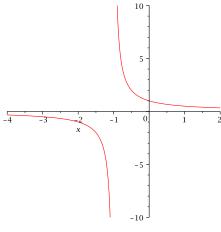


d)
$$f(x) = \frac{1}{1+x}$$
, $E = D(f)$.

Der Definitionsbereich ist $E = D(f) = \mathbb{R} \setminus \{-1\}.$

Die Funktion ist injektiv, aber nicht surjektiv (der Wert 0 wird nicht angenommen);

kein Infimum und Supremum; keine Min/Maximumsstellen.



e)
$$f(x) = (f_2 \circ f_1)(x)$$
, mit $f_1(x) = x - 2$, $f_2(x) = |x|$, $E = D(f)$.

Es gilt

$$f(x) = f_2(f_1(x)) = f_2(x-2) = |x-2|.$$

Der Definitionsbereich ist $E = D(f) = \mathbb{R}$.

Die Funktion ist nicht injektiv, nicht surjektiv;

 $\inf = 0$, kein Supremum;

x = 2 ist Minimumsstelle,

keine Maximumsstellen.

