$Musterl{"}$ üsung 2 – Analyse I (Allemand)

Herbst/Winter '24

Prof. J. Krieger

T. Schmid

(A1) Multiple Choice

a) Es werden die Aussagen aufgelistet, die wahr sind. Die anderen jeweiligen Aussagen sind dann falsch.

 \circ 10 ist Maximum von Ω

 \circ 2 ist untere Schranke von Ω

 $\circ~\Omega$ ist beschränkt

 $\circ~2$ ist Infimum von Ω

b) \circ 10 ist obere Schranke Ω

 \circ 5 ist Supremum von Ω

 $\circ \Omega$ ist nach unten beschränkt

c) • 4 ist das Maximum

o π ist Infimum von Ω aber kein Minimum

d) • wahr da Inf (A) eine untere und Sup (A) eine obere Schranke liefert.

• falsch, z.B. $[-1,0) \cup (1,2]$

• falsch, z.B. $(-1,0] \cup [1,2)$

• wahr, denn angenommen z. B. Inf $(A) \in A$. Dann gibt es aber nach Definition des Infumum kein $\delta > 0$ so, dass $(\operatorname{Inf}(A) - \delta, \operatorname{Inf}(A) + \delta) \subset A$. Sonst gäbe es ein $x \in A$ mit $x < \operatorname{Inf}(A)$. Dass es kein solches $\delta > 0$ für ein Element in A gibt widerspricht aber der Offenheit von A.

• wahr, denn angenommen z. B. Inf $(A) \notin A$, aber $\in \mathbb{R}$ da A beschränkt ist. Da A abgeschlossen ist, ist A^C das Mengenkomplement offen. Dann gibt es aber nach Definition des Infumum ein $\delta > 0$ so, dass $(\operatorname{Inf}(A) - \delta, \operatorname{Inf}(A) + \delta) \subset A^C$. Dann ist aber jedes $x \in A^C$ im vorherigen Interval mit $x > \operatorname{Inf}(A)$ eine grössere untere Schranke für A. Ein Widerspruch zur Definiton des Infimums.

(A2) Infimum und Supremum

Bestimme für die Menge Ω das Infimum, Supremum, Maximum und Minimum, falls sie existieren.

a) $\Omega = [1, 50]$

Inf $\Omega = \min \Omega = 1$, Sup $\Omega = 50$, max existiert nicht.

b) $\Omega =]1, \infty[$

Inf $\Omega = 1$, min existiert nicht. Sup $\Omega = \infty$, max existiert nicht.

c) $\Omega = [3, 5] \cup [3, 10]$

Inf
$$\Omega = \min \Omega = 3$$
, Sup $\Omega = \max \Omega = 10$

d) $\Omega = [-10, 5] \cap [2, 10]$

Inf $\Omega = 2$, min existiert nicht. Sup $\Omega = \max \Omega = 5$.

e) $\Omega = \{ p^{-1} \mid p \text{ ist Primzahl } \}$

Inf
$$\Omega = 0$$
, min existiert nicht. Sup $\Omega = \max \Omega = \frac{1}{2}$

Bemerkung: die kleinste Primzahl ist 2. Es gibt unendlich viele Primzahlen (Satz von Euklid). Daher geht p^{-1} nach Null für beliebig große p.

f)
$$\Omega = \left\{ \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \dots \right\}$$

Inf $\Omega = \min \Omega = \frac{1}{2}$, Sup $\Omega = 1$, max existiert nicht.

g)
$$\Omega = \{ x \in \mathbb{R} \mid x + x^2 < 6 \}$$

Inf $\Omega = -3$, min existiert nicht. Sup $\Omega = 2$, max existiert nicht.

Bemerkung: Die Nullstellen von $x + x^2 - 6$ sind -3 und 2.

h)
$$\Omega = \{ \sin(x) \mid x \in \mathbb{R}, \ 0 \le x < \pi/2 \}$$

Inf $\Omega = \min \Omega = 0$, Sup $\Omega = 1$, max existient nicht.

(A3) Etwas zum Betrag ...

Zeigen Sie, dass für zwei reelle Zahlen x, y gilt:

a)
$$|xy| = |x||y|$$

$$\Leftrightarrow |xy|^2 = (|x||y|)^2 \Leftrightarrow (xy)^2 = |x|^2|y|^2 \Leftrightarrow x^2y^2 = x^2y^2.$$

Bemerkung: Da beide Seiten der Gleichung positiv sind, ist Quadrieren eine Äquivalenzumformung und die " \Leftrightarrow " sind gerechtfertigt. Im Allgemeinen gilt dies nicht!

b) $|x + y| \le |x| + |y|$ (Dreiecksungleichung)

$$|x+y| \le |x| + |y|$$

$$\Leftrightarrow |x+y|^2 \le (|x|+|y|)^2$$

$$\Leftrightarrow (x+y)^2 \le |x|^2 + 2|x||y| + |y|^2$$

$$\Leftrightarrow x^2 + 2xy + y^2 \le x^2 + 2|xy| + y^2$$

$$\Leftrightarrow xy \le |xy|.$$

Bemerkung: Da beide Seiten der Gleichung positiv sind, ist Quadrieren eine Äquivalenzumformung und die " \Leftrightarrow " sind gerechtfertigt.

c)
$$||a| - |b|| \le |a - b|$$

$$\begin{aligned} ||a| - |b|| &\leq |a - b| \\ \Leftrightarrow (|a| - |b|)^2 &\leq (a - b)^2 \\ \Leftrightarrow |a|^2 - 2|a||b| + |b|^2 &\leq a^2 - 2ab + b^2 \\ \Leftrightarrow a^2 - 2|ab| + b^2 &\leq a^2 - 2ab + b^2 \\ \Leftrightarrow -|ab| &\leq -ab. \\ \Leftrightarrow |ab| &\geq ab. \end{aligned}$$

Falls $ab \geq 0$ gilt Gleichheit, falls ab < 0 ist |ab| immer größer als ab. Bemerkung: Da beide Seiten der Gleichung positiv sind, ist Quadrieren eine Äquivalenzumformung und die " \Leftrightarrow " sind gerechtfertigt.

d)
$$\min(x, y) = \frac{x+y-|y-x|}{2}$$

Falls $x \leq y$, dann $\min(x,y) = x$ und $\frac{x+y-|y-x|}{2} = \frac{x+y-y+x}{2} = x$. Falls x > y, dann $\min(x,y) = y$ und $\frac{x+y-|y-x|}{2} = \frac{x+y+y-x}{2} = y$.

e)
$$\max(x, y) = \frac{x+y+|y-x|}{2}$$

Falls $x \ge y$, dann $\max(x,y) = x$ und $\frac{x+y+|y-x|}{2} = \frac{x+y-y+x}{2} = x$. Falls x < y, dann $\max(x,y) = y$ und $\frac{x+y+|y-x|}{2} = \frac{x+y+y-x}{2} = y$.

2

(A4) Definition der Konvergenz

Sei $\varepsilon > 0$ (beliebig aber fest). Es gilt $|0 - x_n| \le \varepsilon$ für alle x_n mit $n \ge \varepsilon^{-2}$, da

$$\big|0 - \frac{(-1)^{n-1}}{\sqrt{n}}\big| = \big|\frac{(-1)^{n-1}}{\sqrt{n}}\big| = \big|\frac{1}{\sqrt{n}}\big| \le \varepsilon \iff \big(\frac{1}{\sqrt{n}}\big)^2 = \frac{1}{n} \le \varepsilon^2 \iff n \ge \varepsilon^{-2}.$$

Wir wählen $N_{\varepsilon} \in \mathbb{N}$ mit $N_{\varepsilon} \geq \varepsilon^{-2}$. Für dieses N_{ε} gilt $|0 - x_n| \leq \varepsilon$ für alle $n \geq N_{\varepsilon}$. Wir finden wir ein solches N_{ε} für jedes beliebige $\varepsilon > 0$.

Damit ist für alle $\varepsilon > 0$ bewiesen, dass ein $N_{\varepsilon} \in \mathbb{N}$, für das die Ungleichung $|0 - x_n| \leq \varepsilon$ für alle $n \geq N_{\varepsilon}$ erfüllt ist, existiert. \Rightarrow Die Folge konvergiert gegen 0.

(A5) Grenzwerte

Berechne die Grenzwerte dieser Folgen für $n \in \mathbb{N} \setminus \{0\}, n \to \infty$:

a)
$$x_n = \frac{4n^2 + 2n - 5}{n(n-7)}$$

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{n^2 (4 + 2n^{-1} - 5n^{-2})}{n^2 (1 - 7n^{-1})} = \frac{\lim_{n \to \infty} (4 + 2n^{-1} - 5n^{-2})}{\lim_{n \to \infty} (1 - 7n^{-1})} = \frac{4}{1} = 4$$

b)
$$x_n = \frac{-9n^4 + n - 7}{n^2(2n^3 - n^2 - 2n - 3)}$$

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{n^5(-9n^{-1} + n^{-4} - 7n^{-5})}{n^5(2 - n^{-1} - 2n^{-2} - 3n^{-3})} = 0$$

c)
$$x_n = \frac{\sqrt{n^4 + 4n^3 + 6}}{2n^2 - 1} = \frac{\sqrt{n^4 + 4n^3 + 6}}{\sqrt{(2n^2 - 1)^2}} = \sqrt{\frac{n^4 + 4n^3 + 6}{4n^4 - 4n^2 + 1}}$$

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \sqrt{\frac{n^4 + 4n^3 + 6}{4n^4 - 4n^2 + 1}} = \lim_{n \to \infty} \sqrt{\frac{n^4 (1 + 4n^{-1} + 6n^{-4})}{n^4 (4 - 4n^{-2} + n^{-4})}}$$
$$= \sqrt{\lim_{n \to \infty} \frac{n^4 (1 + 4n^{-1} + 6n^{-4})}{n^4 (4 - 4n^{-2} + n^{-4})}} = \sqrt{\frac{1}{4}} = \frac{1}{2}$$

d)

$$x_n = \sqrt{8n^2 + n + 4} - 2\sqrt{2n^2 - 1} = \frac{(\sqrt{8n^2 + n + 4} - 2\sqrt{2n^2 - 1})(\sqrt{8n^2 + n + 4} + 2\sqrt{2n^2 - 1})}{\sqrt{8n^2 + n + 4} + 2\sqrt{2n^2 - 1}}$$

$$= \frac{(\sqrt{8n^2 + n + 4})^2 - 4(\sqrt{2n^2 - 1})^2}{\sqrt{8n^2 + n + 4} + 2\sqrt{2n^2 - 1}} = \frac{8n^2 + n + 4 - 8n^2 + 4}{\sqrt{8n^2 + n + 4} + 2\sqrt{2n^2 - 1}}$$

$$= \frac{n + 8}{\sqrt{8n^2 + n + 4} + 2\sqrt{2n^2 - 1}}$$

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{n+8}{\sqrt{n^2(8+n^{-1}+4n^{-2})} + 2\sqrt{n^2(2-n^{-2})}}$$

$$= \lim_{n \to \infty} \frac{n(1+8n^{-1})}{n(\sqrt{8+n^{-1}+4n^{-2}} + 2\sqrt{2-n^{-2}})}$$

$$= \frac{\lim_{n \to \infty} (1+8n^{-1})}{\sqrt{\lim_{n \to \infty} (8+n^{-1}+4n^{-2})} + 2\sqrt{\lim_{n \to \infty} (2-n^{-2})}}$$

$$= \frac{1}{\sqrt{8}+2\sqrt{2}} = \frac{1}{4\sqrt{2}} = \frac{\sqrt{2}}{8}$$

e)
$$x_n = \prod_{k=2}^n (1 + \frac{1}{k})$$

Wir schreiben das Produkt aus ("Teleskop-Produkt"):

$$x_n = \prod_{k=2}^n \left(1 + \frac{1}{k}\right) = \prod_{k=2}^n \frac{k+1}{k} = \frac{3}{2} \cdot \frac{4}{3} \cdot \dots \cdot \frac{n+1}{n} = \frac{n+1}{2}$$

und somit divergiert (x_n) .