

Prof. J. Krieger, T.Schmid Musterlösung Extraübung 2 Herbst 2024

Dauer: XXX Minuten

1

Student 1

SCIPER: 999000

Warten Sie mit dem Umblättern der Seite, bis die Prüfung begonnen hat. Dieses Dokument ist beidseitig bedruckt und enthält insgesamt 3 Seiten, wobei die letzten Seiten leer sein können. Bitte nicht heften.

- Posez votre carte d'étudiant sur la table.
- Aucun document n'est autorisé.
- L'utilisation d'une calculatrice et de tout outil électronique est interdite pendant l'épreuve.
- Pour les questions à **choix multiple**, on comptera:
 - +3 points si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - −1 point si la réponse est incorrecte.
- Pour les questions de type **vrai-faux**, on comptera:
 - +1 point si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - -1 point si la réponse est incorrecte.
- Utilisez un stylo à encre noire ou bleu foncé et effacez proprement avec du correcteur blanc si nécessaire.
- Si une question est erronée, l'enseignant se réserve le droit de l'annuler.

Respectez les consignes suivantes Observe this guidelines Beachten Sie bitte die unten stehenden Richtlinien		
choisir une réponse select an answer Antwort auswählen	ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen	Corriger une réponse Correct an answer Antwort korrigieren
ce qu'il ne faut <u>PAS</u> faire what should <u>NOT</u> be done was man <u>NICHT</u> tun sollte		

CATALOGUE

Ditter Teil, offene Fragen

Beantworten Sie Ihre Fragen in dem dafür vorgesehenen Raum. Ihre Antwort muss sorgfältig begründet sein, alle Schritte Ihrer Argumentation müssen in Ihrer Antwort enthalten sein.

Frage 1: Diese Frage gibt X Punkte.

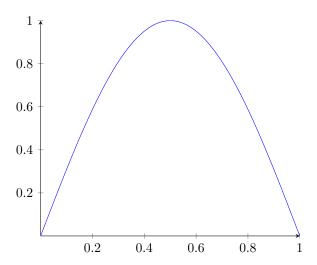
Gegeben sei die Funktion $f: [0, +\infty) \to \mathbb{R}$ mit $f(x) := x e^{-x/5}$. Zeigen Sie dass es eine positive reelle Zahl $x_* > 0$ gibt, so dass $f(x_*) = 1$. Begründen Sie Ihre Antwort ausführlich. Erwähnen Sie explizit Resultate aus der Vorlesung, die Sie dabei verwenden.

Lösung:

Wir erinnern an den Zwischenwertsatz:

Theorem: Gegeben sei $f \in C^0([a,b])$ für a < b. Dann existiert für jedes y zwischen f(a) und f(b) ein $x \in [a,b]$ mit f(x) = y.

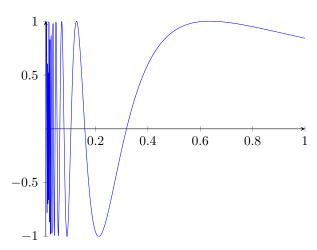
Für a=0 und b=5 erfüllt die gegebene Funktion f(a)=0 und $f(b)=5e^{-1}>1$, also f(a)<1< f(b)Ausserdem ist f als Verknüpfung stetiger Funktionen stetig auf [a,b]. Nach dem Zwischenwertsatz gibt es also ein $x_* \in [0,5]$ so dass $f(x_*)=1$. Weiterhin gilt $x_* \neq 0$ da f(0)=0. Damit hat man eine Zahl $x_*>0$ gefunden, so dass $f(x_*)=1$.


Frage 2: Diese Frage gibt X Punkte.

Gegeben sei eine Funktion $f:(0,1)\to\mathbb{R}$. Man sagt, dass f ein striktes lokales Maximum in $x\in(0,1)$ hat wenn es ein $\alpha>0$ gibt so dass f(y)< f(x) für alle $y\in(0,1)$ mit $0<|y-x|<\alpha$ gilt.

- (a) Geben Sie eine stetige Funktion $f:(0,1)\to\mathbb{R}$ an, die ein striktes lokales Maximum hat.
- (b) Geben Sie eine stetige Funktion $f:(0,1)\to\mathbb{R}$ an, die unendlich viele strikte lokale Maxima hat.

Lösung:


(a) Die Funktion $\sin(\pi x)$ hat ein lokales Maximum bei 1/2. Auf (0,1) gibt es genau eine Stelle an der f(x) = 1 gilt, nämlich bei x = 1/2, an allen anderen Stellen ist die Funktion strikt kleiner als 1. Damit ist die Definition des strikten lokalen Maximum (zum Beispiel) für $\alpha = 1/2$ erfüllt.

(b) Die Funktion $\sin(\frac{1}{x})$ hat unendlich viele strikte lokale Maxima auf (0,1). Um dies zu sehen, stellt man zunächst fest, dass $\sin(\frac{1}{x})$ maximal (also 1) ist genau dann wenn

$$\frac{1}{x} = \frac{\pi}{2} + 2\pi n, n \in \mathbb{Z}$$

$$\iff x = \frac{2}{\pi + 4\pi n}, n \in \mathbb{Z}$$

gilt. Für alle $n \ge 1$ gilt $\frac{2}{\pi + 4\pi n} \in (0,1)$. Für jeden dieser Punkte gibt es eine (kleine) Umgebung in der keiner der anderen Punkte liegt, also alle Funktionswerte strikt kleiner als 1 sind. Damit sind alle diese Punkte strikte lokale Maxima.

