EIN KOMPLIZIERTERES BEISPIEL FUER KOENVERGENZ EINER ZAHLENFOLGE

Setzen wir

$$a_0 = 2$$
, $a_{n+1} = \frac{1}{2} \cdot \left(a_n + \frac{2}{a_n} \right)$, $n \ge 0$.

Dies ist eine Folge positiver Zahlen. Wir behaupten

Satz: Die Folge $(a_n)_{n=0}^{\infty}$ konvergiert gegen $\sqrt{2}$.

Um dies zu zeigen, muessen wir belegen, dass es fuer jedes $\varepsilon > 0$ ein $N_{\varepsilon} \in \mathbb{N}$ gibt derart dass

$$|a_n - \sqrt{2}| < \varepsilon$$

fuer jedes $n \geq N_{\varepsilon}$. Wir zeigen tatsaechlich zunaechst dass

$$a_n^2 - 2$$

nach 0 konvergiert, dann folgt auch die Konvergenz von a_n leicht. Hierfuer betrachten wir

$$a_{n+1}^2 - 2 = \left[\frac{1}{2}(a_n + \frac{2}{a_n})\right]^2 - 2$$

$$= \frac{1}{4} \cdot \left(a_n^2 + 4 + \frac{4}{a_n^2}\right) - 2$$

$$= \frac{a_n^2}{4} + 1 + \frac{1}{a_n^2} - 2$$

$$= \frac{a_n^2}{4} - 1 + \frac{1}{a_n^2}$$

$$= \frac{1}{4} \cdot \left(a_n - \frac{2}{a_n}\right)^2,$$

wo wir zwei Mal die binomische Formel fuer $(a + b)^2$ verwendet haben. Das Vorige kann man auch als

(0.1)
$$a_{n+1}^2 - 2 = \frac{1}{4a_n^2} \cdot (a_n^2 - 2)^2$$

ausdruecken. Nun ist $a_0^2-2=2$, und wir behaupten, dass immer $0< a_n^2-2\leq 2$ gilt. Wenn dies fuer ein $n\geq 0$ gilt, dann auch fuer n+1, da dann

$$0 < \frac{1}{4a_n^2} \cdot \left(a_n^2 - 2\right)^2 \le \frac{1}{4a_n^2} \cdot 4 \le \frac{1}{2}$$

folgt, und somit

$$0 < a_{n+1}^2 - 2 \le \frac{1}{2} < 2$$

folgt. Damit folgt aus $0 < a_n^2 - 2 \le 2$ ebenso $0 < a_{n+1}^2 - 2 \le 2$, und weil die Ungleichungen fuer n = 0 gelten, so sind sie fuer jedes $n \ge 0$ wahr.

Aus (0.1) folgt dann

$$a_{n+1}^2 - 2 = (a_n^2 - 2) \cdot \frac{a_n^2 - 2}{4a_n^2} \le \frac{a_n^2 - 2}{4}, \ n \ge 0.$$

da $\frac{a_n^2-2}{a_n^2} \leq \frac{2}{2} \leq 1$ gilt nach dem eben bewiesenen. Fuer $n \geq 1$ haben wir dann durch repetierte Anwendung dieser Ungleichung (mit n+1 ersetzt durch n)

$$0 < a_n^2 - 2 \le \frac{1}{4} \left(a_{n-1}^2 - 2 \right) \le \frac{1}{4} \cdot \frac{1}{4} \left(a_{n-2}^2 - 2 \right) \le \ldots \le \frac{1}{4^n} \cdot \left(a_0^2 - 2 \right) = \frac{2}{4^n}.$$

Nach dem Beispiel der Folge $(q^n)_{n=0}^{\infty}$ mit $q=\frac{1}{4}$ wissen wir dass $\frac{2}{4^n}$ nach 0 konvergiert wenn $n\to\infty$. Damit folgt dass

$$a_n^2 - 2 \longrightarrow 0$$

wenn $n \longrightarrow \infty$. Schliesslich kommen wir zur Konvergenz von a_n nach $\sqrt{2}$. Hier haben wir 1

$$|a_n - \sqrt{2}| = \frac{|a_n^2 - 2|}{|a_n + \sqrt{2}|} \le \frac{a_n^2 - 2}{\sqrt{2} + \sqrt{2}} \le \frac{1}{\sqrt{2} \cdot 4^n}.$$

Wenn $\varepsilon > 0$ gegeben ist, so waehlen wir $N_{\varepsilon} \in \mathbb{N}$ gross genug, sodass

$$\frac{1}{\sqrt{2} \cdot 4^{N_{\varepsilon}}} < \varepsilon.$$

Dies ist gleichbedeutend mit

$$\sqrt{2} \cdot 4^{N_{\varepsilon}} > \varepsilon^{-1}$$
.

oder, wenn wir mit Logarithmen bezueglich der Basis 4 rechnen, mit

$$N_{\varepsilon} > \log_4 \big(\frac{1}{\sqrt{2}\varepsilon}\big)$$

Weil N_{ε} eine ganze Zahl sein soll, koennen wir

$$N_{\varepsilon} = \lfloor \log_4 \left(\frac{1}{\sqrt{2}\varepsilon} \right) \rfloor + 1$$

setzen.

Dann ist

$$\frac{1}{\sqrt{2} \cdot 4^n} < \varepsilon$$

fuer $n \geq N_{\varepsilon}$ weil die Folge $\frac{1}{\sqrt{2 \cdot 4^n}}$ monoton abnimmt. Also gilt

$$\left|a_n - \sqrt{2}\right| < \varepsilon$$

fuer $n \geq N_{\varepsilon}$. Weil $\varepsilon > 0$ belibig war, folgt die Konvergenz von $(a_n)_{n=0}^{\infty}$ nach $\sqrt{2}$.

¹Weil $0 < a_n^2 - 2$ und $0 < a_n$ haben wir $a_n > \sqrt{2}$.