ABGESCHLOSSENHEIT UND KONVERGENZ VON ZAHLENFOLGEN

Wir erinnern daran, dass eine Menge $A \subset \mathbb{R}$ genau dann abgeschlossen ist, falls ihr Komplement $A^c = \mathbb{R} \backslash A$ offen ist. Es gibt eine andere Art, Abgeschlossenheit zu charakterisieren, naemlich mittels einer Eigenschaft konvergenter Zahlenfolgen in A:

Satz: Eine Menge $A \subset \mathbb{R}$ ist genau dann abgeschlossen, falls jede Folge $(x_n)_{n=0}^{\infty} \subset A$ (also mit $x_j \in A$ fuer jedes $j \geq 0$) die in \mathbb{R} konvergiert, einen Limit in A hat.

Beispiel: die Menge A = [a, b] mit a < b rellen Zahlen, ist abgeschlossen. In der Tat sieht man direkt, dass eine Zahlenfolge $(x_n)_{n=0}^{\infty} \subset A$ die in \mathbb{R} konvergiert, entweder gegen einen Punkt in (a, b) konvergiert, oder gegen einen der Grenzpunkte a, b, die beide in A liegen.

Beispiel: die Menge [a,b) mit a < b reelle Zahlen, ist nicht abgeschlossen. Man kann naemlich eine Folge $(x_n)_{n=0}^{\infty} \subset A$ waehlen, welche gegen b konvergiert (dann konvergiert die Folge in \mathbb{R}), aber $b \notin A$.

Zum Beweis des Satzes nehmen wir zuerst an, dass A abgeschlossen ist nach unserer alten Definition, dass also $A^c = \mathbb{R} \setminus A$ offen ist. Sei nun $(x_n)_{n=0}^{\infty} \subset A$ eine Zahlenfolge, die in \mathbb{R} konvergiert. Nehmen wir im Rahmen eines Widerspruchsbeweises an, dass $x = \lim_{n \to \infty} x_n \notin A$. Dann ist also $x \in A^c$, und letzteres ist eine offene Menge. Also gibt es $\delta > 0$, sodass $]x - \delta, x + \delta[\subset A^c$. Die Folge $(x_n)_{n=0}^{\infty} \subset A$ kann dann nicht in diese Umgebung eintreten. Aber nach Definition von Konvergenz mit $\varepsilon = \delta$ gibt es ein $N_{\delta} \in \mathbb{N}$ derart, dass

$$|x_n - x| < \delta, \ n \ge N_\delta.$$

Dies bedeutet $x_n \in]x - \delta, x + \delta[$, im Widerspruch zum Vorigen. Dies beweist $x \in A$.

Umgekehrt nehmen wir an, dass jede Folge $(x_n)_{n=0}^{\infty} \subset A$, welche in $\mathbb R$ konvergiert, einen Limit in A hat. Dann zeigen wir, dass A abgeschlossen ist. Dies bedeutet zu zeigen, dass das Komplement offen ist. Nehmen wir also an, dass A^c nicht offen ist. Dann gibt es ein $x \in A^c$ mit der Eigenschaft, dass es $kein \ \delta > 0$ gibt mit der Eigenschaft dass $]x - \delta, x + \delta[\subset A^c$. Dies bedeutet, dass es fuer jedes $\delta > 0$ eine Zahl $y \in]x - \delta, x + \delta[\cap A$ gibt. Die Idee ist, daraus eine Folge von Zahlen zu konstruieren in A, die gegen x konvergiert, und deshalb x in A sein muesste, was ja nicht der Fall ist nach Annahme.

Dazu setzen wir zum Beispiel $\delta_k = \frac{1}{k}$, $k \ge 1$. Dann gibt es fuer jedes $k \ge 1$ einen Punkt $y_k \in]x - \delta_k, x + \delta_k[\cap A]$ (diese Punkte muessen nicht alle unterschiedlich sein!), und offensichtlich ist dann

$$\lim_{k \to \infty} y_k = x.$$

Aber nach Konstruktion ist $(y_k)_{k=0}^{\infty} \subset A$, und nach Annahme muesste der Limit in A sein, im Widerspruch zu $x \in A^c$!