EPFL – Automne 2024	
Analyse $I - MT$	Exercices
Série 8	4 novembre 2024
Questions durant la session du 11 novembre	
Remarque Certains exercices consistent en des questions de type Vrai ou Faux (V/F répondre VRAI si l'affirmation est toujours vraie ou par FAUX si elle n'est	•
Exercice 1. Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $3x = \pi$	
$f(x) = \frac{3x}{2} + \frac{\pi}{2}\cos(x) - \frac{3\pi}{4}\sin(x).$	
(i) Soit $(x_n)_{n\geq 0}$, la suite définie par récurrence par	
$\begin{cases} x_0 = 0 \\ x_{n+1} = f(x_n) n \ge 0. \end{cases}$	
Alors,	
\Box (x_n) converge et $\lim_{n\to\infty} x_n = \frac{\pi}{2}$.	
\Box (x_n) converge et $\lim_{n\to\infty} x_n = \pi$.	
\Box (x_n) diverge, $\liminf_{n\to\infty} x_n = 0$ et $\limsup_{n\to\infty} x_n = \pi$.	
\Box (x_n) diverge, $\liminf_{n\to\infty} x_n = 0$ et $\limsup_{n\to\infty} x_n = \frac{\pi}{2}$.	
(ii) Soit $(x_n)_{n\geq 0}$, la suite définie par récurrence par	
$\begin{cases} x_0 = \pi \\ x_{n+1} = f(x_n) & n \ge 0. \end{cases}$	
Alors,	
$\Box (x_n)$ converge et $\lim_{n\to\infty} x_n = \frac{\pi}{2}$.	
\Box (x_n) converge et $\lim_{n\to\infty} x_n = \pi$.	
\Box (x_n) diverge, $\liminf_{n\to\infty} x_n = 0$ et $\limsup_{n\to\infty} x_n = \pi$.	
\Box (x_n) diverge, $\liminf_{n\to\infty} x_n = 0$ et $\limsup_{n\to\infty} x_n = \frac{\pi}{2}$.	
Exercice 2. Rappel: f est croissante si $x \leq y$ implique $f(x) \leq f(y)$ et décroissante si x Soient les fonctions $f, g: \mathbb{R} \to \mathbb{R}$. Déterminer la monotonie de leur composé	
(i) f et g sont croissantes,	
(ii) f et g sont décroissantes,	
(iii) f est croissante et g est décroissante.	
Qu'en est-il de la monotonie de $f\circ g$ dans le cas (iii) ?	
Exercice 3. (i) Si $f: X \to Y$ est croissante et bijective, alors $f^{-1}: Y \to Y$	X est
□ décroissante	
\Box croissante	
\Box ni croissante ni décroissante	
□ bornée	
(ii) Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction impaire et bijective, alors f^{-1} est	

 $\hfill\Box$ impaire

□ paire

 \square ni paire ni impaire

□ périodique

Exercice 4. (i) Montrer par récurrence que pour tout $n \ge 1$,

$$\sum_{k=1}^{n} \log \left(\frac{(k+1)^2}{k(k+2)} \right) = \log \left(\frac{n+1}{n+2} \right) + \log(2).$$

(ii) En déduire la valeur de la série

$$\sum_{k=1}^{\infty} \log \left(\frac{(k+1)^2}{k(k+2)} \right).$$

<u>Indication</u>: on pourra utiliser sans démonstration que si (x_n) est une suite telle que pour tout n, $x_n > 0$ et $\lim_{n \to \infty} x_n = l > 0$, alors $\lim_{n \to \infty} \log(x_n) = \log(l)$ (car $\log : (0, +\infty) \to \mathbb{R}$ est continue).

Exercice 5. (i) Montrer que pour tout $n \in \mathbb{N}$, $n \ge 1$ et $x, y \in \mathbb{R}$,

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} y^{k} x^{n-k-1}$$

(ii) Soit $n \in \mathbb{N}$ et $f : \mathbb{R}_+ \to \mathbb{R}$ définie par $f(x) = x^n$.

Montrer que f est croissante.

(iii) Soit $n \in \mathbb{N}$ impair et $f : \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^n$.

Montrer que f est croissante.

Suggestion: En choisissant $x, y \in \mathbb{R}$ tels que $x \leq y$ afin de montrer la croissance de f, distinguer les cas $0 \leq x \leq y$, $x \leq 0 \leq y$ et $x \leq y \leq 0$. Pour le dernier cas, utiliser que f est impaire et le résultat du point (ii).

(iv) Soit $n \in \mathbb{N}$ pair et $f: \mathbb{R}_- \to \mathbb{R}$ définie par $f(x) = x^n$.

Montrer que f est décroissante.

Suggestion: utilisez le fait que x^n est paire.

Exercice 6.

Vrai ou faux?

Q1 : Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction périodique. La plus petite période de f est toujours définie, c'est-à-dire qu'il existe un plus petit T > 0 tel que $f(x + T) = f(x) \ \forall x \in \mathbb{R}$.

Q2: Si f est périodique, alors |f| est aussi périodique.

Q3 : Si |f| est périodique, alors f est aussi périodique.

Q4 : Si f et |f| ont une plus petite période, celles-ci sont égales.

Exercice 7.

Donner le domaine de définition et étudier la parité et la périodicité des fonctions f suivantes, en donnant la plus petite période le cas échéant :

(i)
$$f(x) = \frac{x^4 \cos(3x)}{1 + \sin^2(x)}$$

(ii)
$$f(x) = 2\sin\left(\frac{1}{2}x\right)\cos\left(\frac{1}{3}x\right)$$

(iii)
$$f(x) = \tan(3x) + \cos(\pi x)$$

(iv) $f(x) = (x - \lfloor x \rfloor)^2$, où $\lfloor x \rfloor$ est la partie entière inférieure de $x \in \mathbb{R}$. Par exemple $\lfloor \pi \rfloor = 3$, |2.9| = 2, |-1.5| = -2.

Exercice 8.

Montrer les propriétés suivantes des fonctions paires et impaires.

Théorème

Soient $p_1, p_2 : \mathbb{R} \to \mathbb{R}$ deux fonctions paires, $q_1, q_2 : \mathbb{R} \to \mathbb{R}$ deux fonctions impaires et $f : p_1(\mathbb{R}) \to \mathbb{R}$ une fonction. Alors,

- (i) $p_1 + p_2$ est paire.
- (ii) p_1p_2 est paire.
- (iii) $q_1 + q_2$ est impaire.
- (iv) q_1q_2 est paire.
- (v) p_1q_1 est impaire.
- (vi) $q_1 \circ q_2$ est impaire.
- (vii) $p_1 \circ q_1$ est paire.
- (viii) $f \circ p_1$ est paire.

Exercice 9.

Soient $f, g: \mathbb{R} \to \mathbb{R}$ deux fonctions.

Vrai ou faux?

Q1: Si f est strictement monotone, alors f est injective.

Q2: Si f est injective, alors f est monotone.

Q3 : Si f est bijective et croissante, alors sa fonction réciproque f^{-1} est décroissante.

Q4 : Si $f \circ g$ est décroissante, alors f et g sont décroissantes.

Exercice 10.

Trouver les valeurs de $\alpha, \beta \in \mathbb{R}$ pour lesquelles les limites suivantes existent dans \mathbb{R} :

(i)
$$\lim_{x \to \alpha} \frac{\tan(x-\alpha)^2}{(x-\alpha)^2}$$

(ii)
$$\lim_{x \to \alpha} \frac{x^4 - 2\alpha x^3 + 4x^2}{(x - \alpha)^2}$$

(i)
$$\lim_{x \to \alpha} \frac{\tan(x - \alpha)^2}{(x - \alpha)^2}$$
; (ii) $\lim_{x \to \alpha} \frac{x^4 - 2\alpha x^3 + 4x^2}{(x - \alpha)^2}$; (iii) $\lim_{x \to 0} \frac{x^2 \sin(\frac{1}{x}) + \alpha|x|}{\sqrt{x^2 + \beta \left|\cos(\frac{1}{x})\right|}}$.

<u>Indication</u>: pour le (iii), étudier séparemment les cas $\beta = 0, \beta < 0, \beta > 0$.

Exercice 11.

Montrer à l'aide de la définition de la limite que

$$\lim_{x \to 1} (2x + 8) = 10.$$

Exercice 12 (Grammaire mathématique, fonctions).

Vrai ou faux?

Q1:
$$\forall f : \mathbb{R} \to \mathbb{R}, \exists x_0 \in \mathbb{R}, \exists r \in \mathbb{R} \text{ tels que}$$

$$f(x_0) = r.$$

Q2:
$$\exists x_0 \in \mathbb{R} \text{ tel que } \forall f : \mathbb{R} \to \mathbb{R}, \, \exists r \in \mathbb{R} \text{ tel que}$$

$$f(x_0) = r.$$

Q3:
$$\exists r \in \mathbb{R} \text{ tel que } \forall f : \mathbb{R} \to \mathbb{R}, \exists x_0 \in \mathbb{R} \text{ tel que}$$

$$f(x_0) = r$$
.

Q4:
$$\exists x_0 \in \mathbb{R}, \exists r \in \mathbb{R} \text{ tels que } \forall f : \mathbb{R} \to \mathbb{R},$$

$$f(x_0) = r.$$

Solution des exercices calculatoires

Exercice $4 (ii) \log(2)$