Intermezzo : Nombres complexes

Définition

Les nombres complexes sont une extension des nombres réels. Une motivation pour les introduire est de pouvoir résoudre l'équation

$$x^2 = -1$$
.

Comme les nombres réels n'admettent pas de solution à cette équation, on introduit un symbole, i avec la propriété algébrique

$$i^2 = -1$$
.

Définition

Definition

L'ensemble des nombres complexes est définit par

$$\mathbb{C} := \{ a + ib : \ a, b \in \mathbb{R} \}.$$

Si $z = a + ib \in \mathbb{C}$, on note $\Re(z) := a$, la partie réelle de z et $\Im(z) := b$, la partie imaginaire de z.

Deux nombres complexes sont égaux si leur parties réelle **et** imaginaire sont égales.

Opérations

Les opérations d'addition et soustraction sont alors définies par

$$(a + ib) + (c + id) = (a + b) + i(c + d).$$

et

$$(a + ib) - (c + id) = (a - b) + i(c - d).$$

En mots : on additionne les parties réelles et imaginaires séparément.

Opérations

La multiplication est un peu plus compliquée : on utilise la distributivité

$$(a+ib) \cdot (c+id) = a \cdot c + a \cdot id + ib \cdot c + ib \cdot id$$
$$= ac + iad + ibc + i^2bd$$
$$= (ac - bd) + i(ad + bc)$$

car $i^2 = -1$. Il se trouve que comme dans le cas réel, on peut inverser l'opération de multiplication sur $\mathbb{C}^* := \mathbb{C} \setminus \{0\}$.

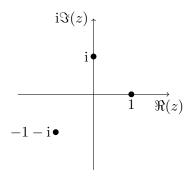
Opérations

On peut donc manipuler les nombres complexes comme des réels en utilisant les règles habituelles et en utilisant $i^2 = -1$.

ATTENTION : les nombres réels viennent avec une structure d'ordre. Cette structure n'existe pas dans \mathbb{C} !

Représentation géométrique

On représente $\mathbb R$ comme une droite. Il faut deux nombres réels pour former un nombre complexe. On peut alors représenter $\mathbb C$ comme un plan :



Module

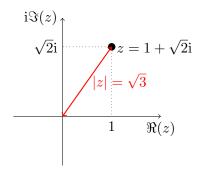
Definition

Soit $z \in \mathbb{C}$. On définit le module de $z=a+\mathrm{i} b$ par

$$|z| := \sqrt{a^2 + b^2}.$$

Module

Le module d'un nombre complexe est la longueur du vecteur correspondant dans le plan complexe :



Par Pythagore!

Module

Le module joue le même rôle que la valeur absolue dans $\mathbb R$:

- $-|z| \ge 0,$
- d(z, w) = |z w| est la distance entre z et w,
- $|z+w| \le |z| + |w|$ et donc $\mathrm{d}(z,w) \le \mathrm{d}(z,v) + \mathrm{d}(v,w)$ pour tous $z,w,v \in \mathbb{C}$.

On a aussi que si $z \in \mathbb{R} \subset \mathbb{C}$ (i.e. : $z = a + 0 \cdot i = a \in \mathbb{R}$), alors |z| est juste la valeur absolue usuelle.

Suites complexes

Definition

Une suite complexe $(z_n)_{n\geq 1}$ est une liste infinie de nombre complexes $z_n \in \mathbb{C}$ pour tout $n\geq 1$. On dit que la suite $(z_n)_{n\geq 1}$ converge vers $z\in \mathbb{C}$, noté $z_n\to z$ ou $\lim_{n\to\infty} z_n=z$ si

$$\forall \epsilon > 0, \exists n_0 \in \mathbb{N} : \forall n \ge n_0, |z_n - z| \le \epsilon.$$

REMARQUE: $z_n = a_n + \mathrm{i} b_n$ converge vers $z = a + \mathrm{i} b$ si et seulement si les suites $(a_n)_{n \geq 1}$ et $(b_n)_{n \geq 1}$ convergent respectivement vers a et b. On peut donc réutiliser les critères de convergence pour les suites réelles.

Conjugué complexe

Definition

Soit $z \in \mathbb{C}$. On définit le conjugué complexe de $z = a + \mathrm{i} b$ par

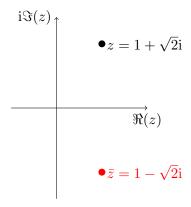
$$\bar{z} := a - ib.$$

En formule:

$$\bar{z} = \Re(z) - i\Im(z).$$

Conjugué complexe

Le conjugué complexe correspond à l'image miroir de z à travers $\mathbb{R} = \{a+0\mathrm{i}:\ a\in\mathbb{R}\}:$



Conjugué complexe

Le conjugué complexe a un certain nombre de propriétés utiles :

$$-z + \bar{z} = 2\Re(z),$$

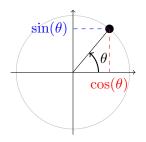
$$-z - \bar{z} = i2\Im(z),$$

$$-z\bar{z}=|z|^2.$$

Preuves en exercices.

Forme polaire, rappel

On se rappelle la définition du sinus et cosinus d'un angle :



En particulier,

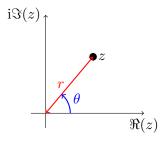
$$cos(-\theta) = cos(\theta), \quad sin(-\theta) = -sin(\theta).$$

Forme polaire

Comme on peut voir $\mathbb C$ comme un plan, on peut aussi écrire ses éléments sous $forme\ polaire\ (angle-module)$:

$$z = r(\cos(\theta) + i\sin(\theta)),$$

avec r=|z| le module de z et θ un angle entre 0 et 2π radians (ou 0 et 360 degrés) appelé l'argument de z.



Forme polaire

Dans cette forme, on peut voir que multiplier par $i = 1 \cdot (\cos(\pi/2) + i\sin(\pi/2))$ correspond à faire une rotation du plan par $\pi/2$ (90 degrés) :

$$r(\cos(\theta) + i\sin(\theta)) \cdot i = r(-\sin(\theta) + i\cos(\theta))$$
$$= r(\cos(\theta + \pi/2) + i\sin(\theta + \pi/2)).$$

Plus généralement, multiplier par $z = \cos(\theta) + i\sin(\theta)$ (un nombre complexe de module 1, ou *phase*) revient à faire une rotation d'angle θ autour de 0.

Forme exponentielle

La dernière manière d'écrire les nombres complexe est la forme exponentielle qui utilise les même paramètres que la forme polaire :

$$z = re^{i\theta} = r(\cos(\theta) + i\sin(\theta)).$$

On verra plus tard comment on peut justifier l'égalité

$$e^{i\theta} = \cos(\theta) + i\sin(\theta).$$

Formules d'Euler

De l'égalité

$$e^{i\theta} = \cos(\theta) + i\sin(\theta),$$

(version exponentielle de la formule d'Euler) et de $\sin(-\theta) = -\sin(\theta)$, $\cos(-\theta) = \cos(\theta)$, on déduit la version trigonométrique des formules d'Euler :

$$\cos(\theta) = \frac{1}{2} (e^{i\theta} + e^{-i\theta}),$$

$$\sin(\theta) = \frac{1}{2i} (e^{i\theta} - e^{-i\theta}).$$

Exercice : vérifier ces deux égalités en utilisant la version exponentielle.

(R)appel

La fonction exponentielle $x \mapsto e^x$ (comme fonction de \mathbb{R} dans \mathbb{R}) satisfait

- $-e^{x+y} = e^x e^y,$
- $-e^{-x} = \frac{1}{e^x},$
- $-e^0=1.$

On peut étendre le domaine et le co-domaine de cette fonction à \mathbb{C} : c'est qui permet d'écrire $e^{\mathrm{i}\theta}$ et plus généralement e^z pour $z\in\mathbb{C}$. Les propriétés ci-dessus restent vraies pour $x,y\in\mathbb{C}$. On peut aussi prendre la formule d'Euler comme définition de $b\mapsto e^{\mathrm{i}b}$ (qui est donc 2π -périodique) et poser pour $a+\mathrm{i}b\in\mathbb{C}$

(R)appel

On peut aussi prendre la formule d'Euler comme définition de $b\mapsto e^{\mathrm{i}b}$ (qui est donc 2π -périodique) et poser pour $a+\mathrm{i}b\in\mathbb{C}$

$$e^{a+ib} = e^a e^{ib} = e^a (\cos(b) + i\sin(b)),$$

avec $e^a \in \mathbb{R}_+$.

La notation $re^{\mathrm{i}\theta}$ mets en avant le fait que quand on multiplie deux nombres complexes

$$r_1 e^{\mathrm{i}\theta_1} \cdot r_2 e^{\mathrm{i}\theta_2} = r_1 r_2 e^{\mathrm{i}(\theta_1 + \theta_2)}$$

on multiplie leur modules, alors que leurs arguments s'additionnent : les longueurs se multiplient et les arguments font "tourner" le plan.

Un exemple de suite venant des nombres complexes

Un exemple fréquent de suite à étudier est définit comme suit :

- on se donne une fonction $f: \mathbb{C} \to \mathbb{C}$,
- on démarre avec un nombre $z_0 \in \mathbb{C}$,
- on définit récursivement $z_1 = f(z_0), z_2 = f(z_1),$ etc. :

$$z_n = f(z_{n-1}) = f \circ f(z_{n-2}) = \dots = \underbrace{f \circ f \circ \dots \circ f}_{n \text{ fois}}(z_0)$$

On se demande alors ce qui se passe quand n devient grand.

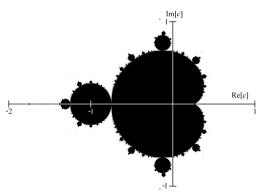
Un exemple de suite venant des nombres complexes

Si on prend par exemple $f: \mathbb{C} \to \mathbb{C}$, $f(z) = z^2 + c$, avec $c \in \mathbb{C}$, et que l'on démarre avec $z_0 = 0$, des comportements différents sont observés selon la valeur de c:

- pour certains c, la suite $|z_n|$ diverge vers $+\infty$,
- pour d'autre, la suite $|z_n|$ reste bornée.

Un exemple de suite venant des nombres complexes

Si on dessine les points $c \in \mathbb{C}$ tels que la suite $|z_n|$ reste bornée, on obtient *l'ensemble de Mandelbrot*:



Sans les axes

