Chapitre V : dérivée

- Définition et exemples
- Dérivée de fonctions composites
- Dérivée des fonctions trigonométriques
- Accroissements et dérivée
- Dérivées d'ordres supérieurs, approximation de Taylor
- Dérivées et limites

Rappel: limites à droite et à gauche

La version "limites" est

Definition

Soit $f: I \to \mathbb{R}$ une fonction. Soit x un point d'accumulation de I. On dit que f admet une limite à gauche (droite) en x si il existe $L \in \mathbb{R}$ tel que pour toute suite $(a_n)_{n\geq 1}$ à valeurs dans $I \cap (-\infty, x)$ ($I \cap (x, +\infty)$) telle que $a_n \to x$, on a

$$\lim_{n\to\infty} f(a_n) = L.$$

On note alors

$$\lim_{y \to x^{-}} f(y) = L, \qquad \lim_{y \to x^{+}} f(y) = L.$$

Rappel: limites à droite et à gauche

f admet une limite en x si elle admet une limite à gauche et une limite à droite et que

$$\lim_{y\to x^-} f(y) = \lim_{y\to x^+} f(y).$$

Définition et exemples

Définition : dérivée à droite et à gauche

Definition

Soit $f: I \to R$. Soit $x \in I$. On dit que f admet une dérivée à gauche (à droite) en x si

$$\lim_{y \to x^{-}} \frac{f(y) - f(x)}{y - x}, \qquad \left(\lim_{y \to x^{+}} \frac{f(y) - f(x)}{y - x}\right)$$

est bien définie. La limite est alors appelée la dérivée à gauche (à droite) de f en x.

Définition : dérivée à droite et à gauche

On dit que $f: I \to \mathbb{R}$ est dérivable à gauche (droite) si elle est dérivable à gauche (droite) en x pour tout $x \in I$.

Exemples

Quelles fonctions admettent des dérivée à gauche/droite en 0?

- (a) $f: \mathbb{R} \to \mathbb{R}, f(x) = |x|;$
- (b) $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$;
- (c) $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} x^2 & \text{si } x > 0, \\ x & \text{si } x \le 0; \end{cases}$$

(d) $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} x^2 & \text{si } x > 0, \\ 0 & \text{si } x = 0, \\ x - 1 & \text{si } x < 0. \end{cases}$$

Au tableau.

Définition : dérivée

Definition

Soit $f: I \to R$. Soit $x \in I$. On dit que f admet une dérivée en x si elle admet une dérivée à gauche et une dérivée à droite et que les deux sont égales. De façon équivalente, f est dérivable en $x \in I$ si

$$\lim_{y \to x} \frac{f(y) - f(x)}{y - x}$$

est bien définie. La limite est alors appelée la dérivée de f en x et est notée f'(x).

Définition : dérivée

On dit que $f: I \to \mathbb{R}$ est dérivable si elle est dérivable en x pour tout $x \in I$. On note alors $f': I \to \mathbb{R}$ la fonction qui à chaque x associe la dérivée de f en x.

Exemples

Quelles fonctions sont dérivables en 0?

(a)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = |x|$;

(b)
$$f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$$
;

(c)
$$f: \mathbb{R} \to \mathbb{R}$$
,

$$f(x) = \begin{cases} x^2 & \text{si } x > 0, \\ x & \text{si } x \le 0; \end{cases}$$

(d)
$$f: \mathbb{R} \to \mathbb{R}$$
,

$$f(x) = \begin{cases} x^2 & \text{si } x > 0, \\ 0 & \text{si } x = 0, \\ x - 1 & \text{si } x < 0. \end{cases}$$

Au tableau.

Remarques

- (1) Dérivable à gauche/droite en x implique continue à gauche/droite en x.
- (2) Dérivable en x implique continue en x.

Exemples

- (a) $f: \mathbb{R} \to \mathbb{R}, f(x) = x^n, n \in \mathbb{N}$ est dérivable et $f'(x) = nx^{n-1}$.
- (b) $\exp : \mathbb{R} \to \mathbb{R}$ est dérivable et $\exp'(x) = \exp(x)$.
- (c) $f:(0,+\infty)\to\mathbb{R}, f(x)=1/x$ est dérivable et $f'(x)=-1/x^2$.

Au tableau (ou sur slides suivants).

$$f(x) = x^n$$

On a (voir série 8 ex 5 pour la première égalité)

$$\lim_{y \to x} \frac{y^n - x^n}{(y - x)} = \lim_{y \to x} \sum_{k=0}^{n-1} x^k y^{n-k-1} = \sum_{k=0}^{n-1} \lim_{y \to x} x^k y^{n-k-1} = nx^{n-1}.$$

Donc $x \mapsto x^n$ est dérivable et sa dérivée est $x \mapsto nx^{n-1}$.

$$f(x) = \exp(x)$$

Soit $x \in \mathbb{R}$. On calcule

$$\lim_{y \to x} \frac{e^y - e^x}{y - x} = \lim_{y \to x} e^x \frac{e^{y - x} - 1}{y - x} = e^x \lim_{y \to x} \frac{e^{y - x} - 1}{y - x}.$$

Maintenant,

$$\frac{e^{y-x}-1}{(y-x)} = \sum_{k=1}^{\infty} \frac{(y-x)^k}{k!(y-x)} = \sum_{k=1}^{\infty} \frac{(y-x)^{k-1}}{k!} = \sum_{k=0}^{\infty} \frac{(y-x)^k}{(k+1)!}.$$

Il suffit de montrer que $\lim_{y\to x}\sum_{k=0}^{\infty}\frac{(y-x)^k}{(k+1)!}=1$ pour conclure.

$$f(x) = \exp(x)$$

On a,

$$\Big| \sum_{k=0}^{\infty} \frac{(y-x)^k}{(k+1)!} - 1 \Big| = \Big| \sum_{k=1}^{\infty} \frac{(y-x)^k}{(k+1)!} \Big| \le \sum_{k=1}^{\infty} \frac{|y-x|^k}{(k+1)!}$$

et

$$\sum_{k=1}^{\infty} \frac{|y-x|^k}{(k+1)!} = |y-x| \sum_{k=1}^{\infty} \frac{|y-x|^{k-1}}{(k+1)!}$$

$$\leq |y-x| \sum_{k=0}^{\infty} \frac{|y-x|^k}{k!} = |y-x|e^{|y-x|}.$$

La fonction $y \mapsto |y - x|e^{|y - x|}$ est continue (produit et composition de fonctions continues), donc

$$\lim_{y \to x} |y - x|e^{|y - x|} = |\lim_{y \to x} y - x|e^{|\lim_{y \to x} y - x|} = 0,$$

ce qui donne que $\sum_{k=0}^{\infty} \frac{(y-x)^k}{(k+1)!}$ tend vers 1 quand y tend vers x.

$$f(x) = 1/x$$

On calcule pour $x \neq 0$,

$$\lim_{y \to x} \frac{\frac{1}{y} - \frac{1}{x}}{y - x} = \lim_{y \to x} \frac{1}{xy} \frac{x - y}{y - x} = -\frac{1}{x^2}$$

 $\operatorname{car} \frac{x-y}{y-x} = -1$ et 1/y tend vers 1/x quand $y \to x$ $\operatorname{car} x \neq 0$.

La notation o

On notera o(t) une quantité (fonction) qui est négligeable devant t en 0:

$$\lim_{t \to 0} \frac{o(t)}{t} = 0.$$

Plus généralement, on notera $o(t^n)$ une quantité telle que

$$\lim_{t \to 0} \frac{o(t^n)}{t^n} = 0.$$

On verra que pour $\lambda \in \mathbb{R}$ et $n, m \in \mathbb{N}$, on a

$$o(t^n) + o(t^m) = o(t^{\min(n,m)}), \quad \lambda o(t^n) = o(t^n),$$

 $o(t^n)o(t^m) = o(t^{n+m}), \quad t^n o(t^m) = o(t^{n+m}).$

Définition équivalente de la dérivée

Theorem

Soit $f: I \to \mathbb{R}$, $x_0 \in I$. f est dérivable en x_0 si et seulement si il existe $a \in \mathbb{R}$ tel que pour tout $x \in I$,

$$f(x) = f(x_0) + a(x - x_0) + o(x - x_0).$$

On a alors que $f'(x_0) = a$.

Preuve

Supposons que f est dérivable en x_0 . On a alors

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x),$$

et donc, par propriété des limites,

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - f'(x_0)(x - x_0)}{(x - x_0)}$$

$$= \lim_{x \to x_0} \frac{f(x) - f(x_0)}{(x - x_0)} - \lim_{x \to x_0} \frac{f'(x_0)(x - x_0)}{(x - x_0)}$$

$$= f'(x_0) - f'(x_0) = 0,$$

d'où

$$f(x) - f(x_0) - f'(x_0)(x - x_0) = o(x - x_0).$$

Preuve

Dans l'autre direction, supposons que

$$f(x) = f(x_0) + a(x - x_0) + o(x - x_0).$$

Alors,

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{f(x_0) + a(x - x_0) + o(x - x_0) - f(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \left(a + \frac{o(x - x_0)}{x - x_0} \right) = a.$$

Dérivées de fonctions composites

Stabilité des dérivées I

Theorem

Soient $f, g: I \to \mathbb{R}$. Soit $x_0 \in I$ et $\lambda \in \mathbb{R}$. Alors, si f, g sont dérivables en x_0 ,

- f + g est dérivable en x_0 et $(f + g)'(x_0) = f'(x_0) + g'(x_0)$;
- λf est dérivable en x_0 et $(\lambda f)'(x_0) = \lambda f'(x_0)$.

Le théorème reste vrai si on remplace "dérivable" par "dérivable à gauche/droite".

Preuve de f + g

Comme f, g sont dérivable en x_0 , on a

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0),$$

$$g(x) = g(x_0) + g'(x_0)(x - x_0) + o(x - x_0).$$

En particulier, comme o(t) + o(t) = o(t) car

$$\lim_{t \to 0} \frac{o(t) + o(t)}{t} = \lim_{t \to 0} \frac{o(t)}{t} + \lim_{t \to 0} \frac{o(t)}{t} = 0,$$

on a

$$(f+g)(x) = f(x) + g(x)$$

$$= f(x_0) + f'(x_0)(x - x_0) + o(x - x_0) + g(x_0) + g'(x_0)(x - x_0) + o(x - x_0)$$

$$= (f+g)(x_0) + (f'(x_0) + g'(x_0))(x - x_0) + o(x - x_0).$$

Preuve de λf

Comme f est dérivable en x_0 , on a

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0).$$

En particulier, comme $\lambda o(t) = o(t)$ car

$$\lim_{t \to 0} \frac{\lambda o(t)}{t} = \lambda \lim_{t \to 0} \frac{o(t)}{t} = 0,$$

on a

$$(\lambda f)(x) = \lambda f(x) = \lambda f(x_0) + \lambda f'(x_0)(x - x_0) + o(x - x_0)$$

= $(\lambda f)(x_0) + \lambda f'(x_0)(x - x_0) + o(x - x_0),$

d'où
$$(\lambda f)'(x_0) = \lambda f'(x_0)$$
.

Application

Les polynômes sont dérivables et la dérivée de $p(x) = \sum_{k=0}^{n} a_k x^k$ est

$$p'(x) = \sum_{k=1}^{n} k a_k x^{k-1}.$$

Stabilité des dérivées II

Theorem

Soient $f: I \to \mathbb{R}$, $g: J \to \mathbb{R}$ avec $f(I) \subset J$. Soit $x_0 \in I$. Alors, si f est dérivable en x_0 et g est dérivable en $f(x_0)$, $g \circ f: I \to \mathbb{R}$ est dérivable en x_0 , et

$$(g \circ f)'(x_0) = g'(f(x_0))f'(x_0).$$

Le théorème reste vrai si on remplace "f dérivable" par "f dérivable à gauche/droite".

Preuve

Comme f, g sont dérivable en $x_0, f(x_0)$, on a

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0),$$

$$g(y) = g(f(x_0)) + g'(f(x_0))(y - f(x_0)) + o(y - f(x_0)).$$

On obtient que $(g \circ f)(x)$ vaut

$$g(f(x)) = g(f(x_0)) + g'(f(x_0))(f(x) - f(x_0)) + o(f(x) - f(x_0)).$$

Mais

$$f(x) - f(x_0) = f'(x_0)(x - x_0) + o(x - x_0),$$

donc

$$(g \circ f)(x) = g(f(x_0)) + g'(f(x_0))f'(x_0)(x - x_0) + o(x - x_0)$$

Stabilité des dérivées III

Theorem

Soient $f, g: I \to \mathbb{R}$. Soit $x_0 \in I$. Alors, si f, g sont dérivables en x_0 ,

- $f \cdot g$ est dérivable en x_0 et

$$(f \cdot g)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0);$$

- $si\ g(x_0) \neq 0\ et\ g'(x_0) \neq 0,\ \frac{f}{g}\ est\ dérivable\ en\ x_0\ et$

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}$$

Le théorème reste vrai si on remplace "dérivable" par "dérivable à gauche/droite".

Preuve de $f \cdot g$

Comme f, g sont dérivable en x_0 , on a

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0),$$

$$g(x) = g(x_0) + g'(x_0)(x - x_0) + o(x - x_0).$$

Ceci implique

$$(f \cdot g)(x) = f(x)g(x)$$

$$= (f(x_0) + f'(x_0)(x - x_0) + o(x - x_0))(g(x_0) + g'(x_0)(x - x_0) + o(x - x_0))$$

$$= f(x_0)g(x_0) + (f(x_0)g'(x_0) + f'(x_0)g(x_0))(x - x_0) + o(x - x_0),$$

qui est le résultat voulu.

Preuve de $\frac{f}{g}$

Comme f, g sont dérivable en x_0 , et que $\frac{f}{g}$ est le produit que f avec $h \circ g$ où h(x) = 1/x, on obtient que $\frac{f}{g}$ est dérivable en x_0 et que

$$\left(\frac{f}{g}\right)'(x_0) = \left(f \cdot (h \circ g)\right)'(x_0) = \frac{f'(x_0)}{g(x_0)} + f(x_0)(h \circ g)'(x_0).$$

Maintenant, la dérivée de $h \circ g$ est

$$(h \circ g)'(x_0) = h'(g(x_0))g'(x_0) = \frac{g'(x_0)}{g(x_0)^2},$$

ce qui permet de conclure.

Dérivée et fonction réciproque

Theorem

Soient $f: I \to J$ une fonction bijective. Soit $x_0 \in I$. Alors, si f est dérivable en x_0 , sa réciproque f^{-1} est dérivable en $y_0 = f(x_0)$ et

$$(f^{-1})'(y_0) = \frac{1}{f'(f^{-1}(y_0))}.$$

Sans preuve.

Application: l'exponentielle comme (une autre) limite

On va montrer que pour n'importe quel $x \in \mathbb{R}$, on peut obtenir e^x comme

$$e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n.$$

On commence par ré-écrire

$$\left(1 + \frac{x}{n}\right)^n = \exp\left(n\ln\left(1 + \frac{x}{n}\right)\right).$$

Comme la est la réciproque de exp, elle est dérivable et sa dérivée est

$$\ln'(x) = \frac{1}{\exp'(\ln(x))} = \frac{1}{\exp(\ln(x))} = \frac{1}{x}$$

Application: l'exponentielle comme (une autre) limite

En particulier, ln est dérivable en 1 et $\ln'(1) = 1$, ce qui donne

$$\ln(y) = \ln(1) + \ln'(1)(y-1) + o(y-1) = (y-1) + o(y-1)$$

 $\operatorname{car} \ln(1) = 0.$

On obtient

$$\left(1 + \frac{x}{n}\right)^n = \exp\left(n\left(\frac{x}{n} + o(x/n)\right)\right) = e^x \exp\left(no(x/n)\right).$$

On a alors que

$$\lim_{n \to \infty} no(x/n) = \lim_{n \to \infty} x \frac{o(x/n)}{x/n} = \lim_{t \to 0} x \frac{o(t)}{t} = 0.$$

Application: l'exponentielle comme (une autre) limite

En réunissant les ingrédients,

$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = \lim_{n \to \infty} e^x \exp\left(no(x/n) \right)$$

$$= e^x \lim_{n \to \infty} \exp\left(no(x/n) \right) = e^x \exp\left(\lim_{n \to \infty} no(x/n) \right)$$

$$= e^x e^0 = e^x,$$

car exp est continue.

Dérivée des fonctions trigonométriques

Dérivée des fonctions trigonométriques

On va monter

- $\sin : \mathbb{R} \to \mathbb{R}$ est dérivable et $\sin' = \cos$,
- $\cos : \mathbb{R} \to \mathbb{R}$ est dérivable et $\cos' = -\sin$,
- $\tan: (-\pi/2, \pi/2) \to \mathbb{R}$ est dérivable et $\tan' = \frac{1}{\cos^2}$.

Quelques limites

On aura besoin des points suivants

- 1) $\sin(x)/x$ est pair et positive (en tout cas sur \mathbb{R}^*),
- 2) $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$ (voir slides suivants),
- 3) $\lim_{x\to 0} \frac{1-\cos(x)}{x} = 0$ (voir slides suivants),
- 4) les formules pour sin et cos (voir série 2 ex 11) :

$$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y),$$

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y),$$

$$\sin^{2}(x) + \cos^{2}(x) = 1.$$

Limite de $\sin(x)/x$

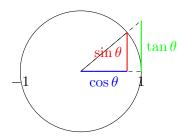
On va utiliser le théorème des gendarmes : pour $x \in (-\pi/2, \pi/2) \setminus \{0\}$ (voir slide suivant)

$$\frac{1}{\cos(x)} \le \frac{\sin(x)}{x} \le \cos(x).$$

On a alors que la limite du terme du milieu est "coincée" entre les limites des termes de gauche et droite. Comme cos est continu et que $\cos(0) = 1 \neq 0$,

$$\lim_{x \to 0} \cos(x) = 1, \qquad \lim_{x \to 0} \frac{1}{\cos(x)} = \frac{1}{1} = 1.$$

Pour trouver les majorations/minorations on utilise



On a que l'aire de la portion de cercle délimitée par l'angle θ est $\theta/(2\pi)$ fois l'aire du cercle (π) . Cette aire est plus petite que l'aire du triangle $(0,0)-(1,0)-(1,\tan(\theta))$ et plus grande que l'aire du triangle $(0,0)-(\cos(\theta),0)-(\cos(\theta),\sin(\theta))$. Traduit en formules, cela donne

$$\frac{\cos(\theta)\sin(\theta)}{2} \le \frac{\theta}{2} \le \frac{\tan(\theta)}{2}$$

Pour $\theta \in (0, \pi/2)$, on utilise $\tan(\theta) = \sin(\theta)/\cos(\theta)$ on ré-arrange pour obtenir (tous les termes sont > 0),

$$\cos(\theta) \le \frac{\theta}{\sin(\theta)} \le \frac{1}{\cos(\theta)}.$$

Les trois termes étant paires, on a la même chaîne d'inégalités pour $\theta \in (-\pi/2, 0)$. Tous les termes étant > 0, on peut prendre l'inverse de chacun pour renverser les inégalités et obtenir

$$\frac{1}{\cos(\theta)} \le \frac{\sin(\theta)}{\theta} \le \cos(\theta).$$

Limite de $(1 - \cos(x))/x$

On a (en multipliant par $1 + \cos(x)$ en haut et en bas)

$$\frac{1 - \cos(x)}{x} = \frac{1 - \cos^2(x)}{x(1 + \cos(x))} = \frac{\sin^2(x)}{x(1 + \cos(x))}.$$

On a alors

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x} = \lim_{x \to 0} \frac{\sin(x)}{x} \sin(x) \frac{1}{1 + \cos(x)} = 1 \cdot 0 \cdot \frac{1}{2} = 0,$$

(limite de produit de fonctions qui admettent des limites).

Dérivée des fonctions trigonométriques : sin

On utilise les formules d'addition pour obtenir (y = x + (y - x))

$$\begin{split} &\lim_{y \to x} \frac{\sin(y) - \sin(x)}{y - x} \\ &= \lim_{y \to x} \frac{\sin(x)\cos(y - x) + \cos(x)\sin(y - x) - \sin(x)}{y - x} \\ &= \lim_{y \to x} \frac{\sin(x)(\cos(y - x) - 1)}{y - x} + \frac{\cos(x)\sin(y - x)}{y - x} \\ &= \lim_{\delta \to 0} \frac{\sin(x)(\cos(\delta) - 1)}{\delta} + \frac{\cos(x)\sin(\delta)}{\delta} = 0 + \cos(x), \end{split}$$

(somme de fonctions qui admettent des limites).

Dérivée des fonctions trigonométriques : cos

On procède de la même façon

$$\lim_{y \to x} \frac{\cos(y) - \cos(x)}{y - x}$$

$$= \lim_{y \to x} \frac{\cos(x)\cos(y - x) - \sin(x)\sin(y - x) - \cos(x)}{y - x}$$

$$= \lim_{y \to x} \frac{\cos(x)(\cos(y - x) - 1)}{y - x} - \frac{\sin(x)\sin(y - x)}{y - x}$$

$$= 0 - \sin(x).$$

Dérivée des fonctions trigonométriques : tan

 $\tan = \frac{\sin}{\cos}$ est une fonction composite de fonctions dérivables. De plus, cos est non-zéro sur le domaine de tan. Donc (dérivée de quotient) :

$$\tan' = \left(\frac{\sin}{\cos}\right)' = \frac{\sin'\cos - \sin\cos'}{\cos^2} = \frac{\cos^2 + \sin^2}{\cos^2} = \frac{1}{\cos^2}.$$

Dérivée des fonctions trigonométriques réciproques

On applique alors le théorème sur la dérivée des fonctions réciproques pour obtenir :

- $\arcsin:[-1,1]\to\mathbb{R}$ est dérivable et

$$\arcsin'(x) = \frac{1}{\cos(\arcsin(x))} = \frac{1}{\sqrt{1-x^2}},$$

- arccos : $[-1,1] \to \mathbb{R}$ est dérivable et

$$\arccos'(x) = \frac{-1}{\sin(\arccos(x))} = \frac{-1}{\sqrt{1-x^2}},$$

- $\arctan: \mathbb{R} \to \mathbb{R}$ est dérivable et

$$\arctan'(x) = \cos^2(\arctan(x)) = \frac{1}{1+x^2}.$$

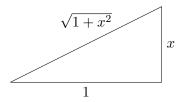
Les secondes égalités des deux premiers cas suivent de $\cos^2(y)+\sin^2(y)=1$ avec $y\in\{\arcsin(x),\arccos(x)\}$, qui donnent

$$\cos(\arcsin(x)) = \sqrt{1 - x^2}, \quad \sin(\arccos(x)) = \sqrt{1 - x^2}.$$

La dernière égalité vient de

$$\cos(\arctan(x)) = \frac{1}{\sqrt{1+x^2}},$$

qui vient de la définition de \cos , \sin , \tan appliquée au triangle (avec l'angle en bas à gauche qui est $\arctan(x)$)



En exercice pour les motivés.

Accroissements et dérivée

Extrema locaux

Definition

Soit $f: I \to \mathbb{R}$ avec I un intervalle. On dit que $x_0 \in I$ est

- un maximum local de f si il existe $\epsilon > 0$ tel que

$$\sup_{x \in (x_0 - \epsilon, x_0 + \epsilon) \cap I} f(x) = f(x_0),$$

- un $minimum\ local\ de\ f$ si il existe $\epsilon>0$ tel que

$$\inf_{x \in (x_0 - \epsilon, x_0 + \epsilon) \cap I} f(x) = f(x_0),$$

- un $extremum\ local$ de f si c'est un maximum ou un minimum local.

Exemples

Quels sont les maxima/minima des fonctions (de \mathbb{R} dans \mathbb{R})

- a) $x \mapsto \sin(x)$?
- b) $x \mapsto \cos(x)$?
- c) $x \mapsto x^4$?
- d) $x \mapsto 1 x^2$?

Extrema locaux et dérivée

Theorem

Soient a < b, $a, b \in \mathbb{R} \cup \{-\infty, +\infty\}$, et $f : (a, b) \to \mathbb{R}$ une fonction dérivable. Soit $x_0 \in (a, b)$ un extremum de f. Alors, $f'(x_0) = 0$.

Sans preuve. Idée au tableau.

Contre-exemple

La fonction $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = x^3$$

satisfait f'(0) = 0, mais 0 n'est pas un extremum de f.

On appelle un point x_0 tel que $f'(x_0) = 0$ un point critique de la fonction f.

Théorème de Rolle

Theorem

Soient $a, b \in \mathbb{R}$, a < b. Soit $f : [a, b] \to \mathbb{R}$ une fonction continue sur [a, b], dérivable sur (a, b), et telle que f(a) = f(b). Alors, il existe $x \in (a, b)$ tel que

$$f'(x) = 0.$$

Preuve

Comme f est continue sur un intervalle fermé et borné, f est bornée et atteint son sup et son inf. En d'autres mots, f([a,b]) = [m,M] pour $m = \min f$, $M = \max f$ (elle atteint tous les points entre m et M par le TVI).

Si m = M, f est constante et donc f' = 0 ce qui donne le résultat. Regardons le cas m < M. Si m < f(a) = f(b), alors il existe $x \in (a, b)$ tel que f(x) = m (f atteint son inf). x est alors un minimum de f et donc f'(x) = 0.

Finalement, si m = f(a), on a M > f(a) = f(b) et il existe $x \in (a,b)$ tel que f(x) = M (f atteint son sup). x est alors un maximum de f et donc f'(x) = 0.

Théorème des accroissements finis (TAF)

Theorem

Soient $a, b \in \mathbb{R}$, a < b. Soit $f : [a, b] \to \mathbb{R}$ une fonction continue sur [a, b], et dérivable sur (a, b). Alors, il existe $c \in (a, b)$ tel que

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Preuve

On applique le théorème de Rolle à la fonction $g:[a,b] \to \mathbb{R}$ donnée par

$$g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a).$$

g est continue (somme de fonctions continues), et dérivable sur (a,b) (somme de fonctions dérivables sur (a,b)). De plus, g(a)=0=g(b). Par le théorème de Rolle, il existe $c\in(a,b)$ tel que

$$0 = g'(c) = f'(c) - \frac{f(b) - f(a)}{b - a}.$$

Conséquence : monotonicité et dérivée

Soient a < b. Soit $f : [a, b] \to \mathbb{R}$ continue sur [a, b] et dérivable sur (a, b). On a

- 1) f est croissante si et seulement si $f'(x) \ge 0$ pour tout $x \in (a,b)$,
- 2) si f'(x) > 0 pour tout $x \in (a, b)$, f est strictement croissante,
- 3) f est décroissante si et seulement si $f'(x) \leq 0$ pour tout $x \in (a,b)$,
- 4) si f'(x) < 0 pour tout $x \in (a, b)$, f est strictement décroissante,
- 5) f est constante si et seulement si f'(x) = 0 pour tout $x \in [a, b]$.

En exercice pour les motivés. Voir corrigé de l'exercice 2 série 11 pour certains points.

Dérivées d'ordres supérieurs, approximation de Taylor

Dérivées d'ordres supérieurs

Definition

On notera aussi $f^{(1)}$ la dérivée de f. Quand elle est bien définie, on note $f^{(2)}$ la dérivée de $f^{(1)}$, et, plus généralement, on définit par récurrence $f^{(k)}$ comme la dérivée de $f^{(k-1)}$.

On noteras $C^1(I)$ l'ensemble des fonctions de I dans $\mathbb R$ qui sont dérivables et dont la dérivée est continue. $C^0(I)$ dénote l'ensemble des fonctions continues de I dans $\mathbb R$. Plus généralement, on note $C^k(I)$ l'ensemble des fonctions k-fois continûment différentiables : $f \in C^k(I)$ si $f^{(k)}$ est bien définie et continue. On notera $C^\infty(I)$ les fonctions qui sont dans $C^k(I)$ pour tout k.

Exemples

- (a) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^n$, $n \in \mathbb{N}$ est dans $C^{\infty}(\mathbb{R})$.
- (b) $\exp : \mathbb{R} \to \mathbb{R}$ est dans $C^{\infty}(\mathbb{R})$ et $\exp^{(k)}(x) = \exp(x)$ pour tout $k \geq 0$.
- (c) $\sin, \cos \cot \operatorname{dans} C^{\infty}(\mathbb{R}).$

Au tableau (ou sur slides suivants).

$$f(x) = x^n$$

On procède par récurrence sur n. Le cas n=0 est la fonction constante =1 dont la dérivée est la fonction constante =0 qui est sa propre dérivée (en particulier, elle est dérivable k fois pour tout k>0).

Pour le pas de récurrence, supposons que $x \mapsto x^n$ est dérivable k fois pour tout $k \in \mathbb{N}$. Soit $k \in \mathbb{N}$, montrons que $x \mapsto x^{n+1}$ est dérivable k fois.

On a montré que $x \mapsto x^{n+1}$ est dérivable et que sa dérivée est donnée par la fonction $x \mapsto (n+1)x^n$, qui est un scalaire fois une fonction dérivable k-1 fois. Donc $x \mapsto (n+1)x^n$ est dérivable k-1 fois et donc $x \mapsto x^{n+1}$ est dérivable k fois. k étant quelconque, cela donne le pas de récurrence.

Comme exp est dérivable et que $\exp' = \exp$, \exp' est alors dérivable avec dérivée exp et ainsi de suite pour les dérivées supérieures.

Même principe avec \sin , \cos : \sin ' = \cos , \cos ' = $-\sin$.

Théorème de Taylor-Lagrange

Theorem

Soient a < b. Soit $f : (a,b) \to \mathbb{R}$ une fonction. Soit $n \in \mathbb{N}$. Supposons que $f \in C^{n+1}((a,b))$. Alors, pour $x_0 \neq x \in (a,b)$, il existe ξ strictement entre x_0 et x tel que

$$f(x) - f(x_0) = \sum_{k=1}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}.$$

Remarque

Ce théorème généralise le théorème des accroissement finis : le TAF est juste le cas n=0 du théorème de Taylor-Lagrange.

On suppose $x > x_0$ pour simplifier. On remarque que $(x - x_0) \neq 0$. En particulier, il existe un unique $\lambda \in \mathbb{R}$ (obtenu en résolvant l'équation pour λ) tel que

$$\frac{\lambda}{(n+1)!}(x-x_0)^{n+1} = f(x) - f(x_0) - \sum_{k=1}^n \frac{f^{(k)}(x_0)}{k!}(x-x_0)^k.$$

Le théorème suit si l'on parvient à montrer que

$$\lambda = f^{(n+1)}(\xi)$$

pour un certain $x_0 < \xi < x$. On va appliquer le théorème de Rolle à une fonction bien choisie pour montrer ceci.

On introduit la fonction $\Psi: [x_0, x] \to \mathbb{R}$

$$\Psi(y) = f(x) - f(y) - \sum_{k=1}^{n} \frac{f^{(k)}(y)}{k!} (x - y)^k - \frac{\lambda}{(n+1)!} (x - y)^{n+1}.$$

On a $\Psi(x) = 0$ (calcule direct) et $\Psi(x_0) = 0$ par définition de λ . De plus, Ψ est continue sur $[x_0, x]$ (somme de fonctions continues) et dérivable sur (x_0, x) (somme de fonctions dérivables). On a alors que par le théorème de Rolle, il existe $\xi \in (x_0, x)$ tel que

$$\Psi'(\xi) = 0.$$

Un calcule direct (en appliquant les règles de dérivation de somme, produit et composition) donne

$$\Psi'(y) = -f'(y) - \sum_{k=1}^{n} \frac{f^{(k+1)}(y)}{k!} (x - y)^{k}$$

$$+ \sum_{k=1}^{n} \frac{f^{(k)}(y)}{(k-1)!} (x - y)^{k-1} + \frac{\lambda}{n!} (x - y)^{n}$$

$$= -f'(y) - \sum_{k=1}^{n} \frac{f^{(k+1)}(y)}{k!} (x - y)^{k}$$

$$+ \sum_{k=0}^{n-1} \frac{f^{(k+1)}(y)}{k!} (x - y)^{k} + \frac{\lambda}{n!} (x - y)^{n}$$

$$= -\frac{f^{(n+1)}(y)}{n!} (x - y)^{n} + \frac{\lambda}{n!} (x - y)^{n}.$$

D'où
$$0=\Psi'(\xi)=\frac{\lambda}{n!}(x-\xi)^n-\frac{f^{(n+1)}(\xi)}{n!}(x-\xi)^n$$
 et donc $\lambda=f^{(n+1)}(\xi).$

Polynôme de Taylor

On appelle le polynôme

$$T_n(x; f, x_0) := \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

le polynôme de Taylor de degré n associé à f en x_0 .

Approximation de Taylor : théorème de Taylor-Young

Theorem

Soit I un intervalle ouvert non-vide, $n \in \mathbb{N}$, $x_0 \in I$ et $f \in C^n(I)$. Alors, pour $x \in I$,

$$f(x) = T_n(x; f, x_0) + o((x - x_0)^n).$$

Approximation de Taylor : preuve

Le théorème de Taylor-Lagrange nous dit en particulier que si $f \in C^n(I)$ et que $x_0 \in I$, on a pour tout $x \in I$,

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n)}(\xi_x)}{n!} (x - x_0)^n$$
$$= \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n)}(\xi_x) - f^{(n)}(x_0)}{n!} (x - x_0)^n$$

avec ξ_x strictement entre x_0 et x. Comme $f^{(n)}$ est continue,

$$\lim_{y \to x_0} f^{(n)}(y) - f^{(n)}(x_0) = 0.$$

Comme ξ_x est entre x_0 et x, $\xi_x \to x_0$ quand $x \to x_0$ et on a

$$\lim_{x \to x_0} f^{(n)}(\xi_x) - f^{(n)}(x_0) = \lim_{y \to x_0} f^{(n)}(y) - f^{(n)}(x_0) = 0.$$

Approximation de Taylor : preuve

On a alors obtenu que

$$(f^{(n)}(\xi_x) - f^{(n)}(x_0))(x - x_0)^n = o((x - x_0)^n).$$

En mettant cette estimée dans la formule obtenue avec Taylor-Lagrange, on obtient le résultat voulu.

Exemples

On peut calculer le polynôme de Taylor de sin et cos en 0 :

$$\sin^{(n)}(x) = \begin{cases} \sin(x) & \text{si } n = 0 \mod 4 \\ \cos(x) & \text{si } n = 1 \mod 4 \\ -\sin(x) & \text{si } n = 2 \mod 4 \\ -\cos(x) & \text{si } n = 3 \mod 4 \end{cases}$$
$$\cos^{(n)}(x) = \begin{cases} \cos(x) & \text{si } n = 0 \mod 4 \\ -\sin(x) & \text{si } n = 1 \mod 4 \\ -\cos(x) & \text{si } n = 2 \mod 4 \\ \sin(x) & \text{si } n = 3 \mod 4 \end{cases}$$

72

En utilisant cos(0) = 1, sin(0) = 0, on obtient les polynômes de Taylor à l'ordre n pour sin:

$$\sum_{k=0}^{n} \frac{\sin^{(k)}(0)x^{k}}{k!} = \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{\sin^{(2k+1)}(0)x^{2k+1}}{(2k+1)!} = \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{(-1)^{k}x^{2k+1}}{(2k+1)!}$$

et cos:

$$\sum_{k=0}^{n} \frac{\cos^{(k)}(0)x^{k}}{k!} = \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{\cos^{(2k)}(0)x^{2k}}{(2k)!} = \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{(-1)^{k}x^{2k}}{(2k)!}.$$

Si on se rappelle de la définition de sin et cos par des séries infinies, on reconnait la troncature de ces séries.

Digression : les fonctions hyperboliques et leurs dérivées

Les fonctions hyperboliques sinh, cosh, tanh : $\mathbb{R} \to \mathbb{R}$ sont données par

$$\sinh(x) = \frac{1}{2}(e^x - e^{-x}), \quad \cosh(x) = \frac{1}{2}(e^x + e^{-x}),$$

 $\tanh(x) = \frac{\sinh(x)}{\cosh(x)}.$

Des propriétés de l'exponentielle et de la définition, on déduit

- sinh est impaire, cosh est paire et tanh est impaire;
- les trois sont dans $C^{\infty}(\mathbb{R})$;
- $\lim_{x \to +\infty} \cosh(x) = \lim_{x \to -\infty} \cosh(x) = \lim_{x \to +\infty} \sinh(x) = +\infty$;
- \sinh , \tanh sont croissantes sur \mathbb{R} . \cosh est croissante sur \mathbb{R}_+ et atteint son minimum en 0.

Digression: les fonctions hyperboliques et leurs dérivées

De la dérivée de l'exponentielle, on trouve

$$\sinh' = \cosh, \quad \cosh' = \sinh, \quad \tanh' = \frac{1}{\cosh^2}.$$

Lien avec les fonctions trigonométriques (pour la culture)

Si on se rappelle des identités
$$\sin(\theta) = \frac{1}{2i}(e^{i\theta} - e^{-i\theta})$$
 et $\cos(\theta) = \frac{1}{2}(e^{i\theta} + e^{-i\theta})$, on trouve (au moins formellement) $\sinh(x) = -i\sin(ix)$, $\cosh(x) = \cos(ix)$.

Lien avec les fonctions trigonométriques (pour la culture)

On retrouve ce lien dans leurs polynômes de Taylor en 0. Pour sinh :

$$\sum_{k=0}^{n} \frac{\sinh^{(k)}(0)x^{k}}{k!} = \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{x^{2k+1}}{(2k+1)!}$$

et pour cosh:

$$\sum_{k=0}^{n} \frac{\cosh^{(k)}(0)x^{k}}{k!} = \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{x^{2k}}{(2k)!}$$

On remarque que l'on a $x^{2k+1} = -\mathrm{i}(-1)^k(\mathrm{i}x)^{2k+1}$ et $x^{2k} = (-1)^k(\mathrm{i}x)^{2k}$. Les polynômes de Taylor en 0 de sinh et cosh sont donc les polynômes de Taylor en 0 de $-\mathrm{i}\sin$ et cos évalué en $\mathrm{i}x$.

Dérivées et limites

Changement de variables

On commence avec une observation générale (que l'on a utilisé quelques fois dans des cas simples) : si $x_0 \in \mathbb{R}$ et $f, g : \mathbb{R} \to \mathbb{R}$ sont telles que $\lim_{x \to x_0} f(x) = L$ est bien définie (possiblement avec $L = \pm \infty$), et que la limite $\lim_{y \to L} g(y)$ est bien définie, on a alors

$$\lim_{x \to x_0} g(f(x)) = \lim_{y \to L} g(y).$$

Même principe avec $\lim_{x\to x_0^+} f(x) = L$. Dans ce cas,

$$\lim_{x \to x_0^+} g(f(x)) = \lim_{y \to L} g(y).$$

et pareil pour x_0^- .

Changement de variables : exemples

On a
$$\lim_{x \to 0} e^{-\frac{1}{x^2}} = \lim_{y \to \infty} e^{-y},$$

$$\lim_{x \to 1} \frac{\sin(1-x)}{1-x} = \lim_{y \to 0} \frac{\sin(y)}{y} = 1.$$

Règle de l'Hospital

Theorem

Soit I = (a,b) un intervalle (avec $a,b = \pm \infty$ autorisé) et $x_0 \in I \cup \{a,b\}$. Soient $f,g:I \setminus \{x_0\} \to \mathbb{R}$ deux fonctions dérivables. Supposons que la limite

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = L$$

soit bien définie (avec $L \in \mathbb{R} \cup \{-\infty, +\infty\}$). Alors, si un des points suivants est vrai :

- $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$,
- $\lim_{x \to x_0} |f(x)| = \lim_{x \to x_0} |g(x)| = +\infty$,

on a que $\lim_{x\to x_0} \frac{f(x)}{g(x)} = L$. Le résultat reste vrai si on remplace les limites par des limites à droite/gauche et les dérivées par des dérivées à droite/gauche.

Sans preuve. Idée sur le slide suivant.

Idée sous-jacente

On regarde la cas $f(x_0) = g(x_0) = 0$ et f', g' continues en x_0 avec $g'(x_0) \neq 0$ pour simplifier. Si f, g sont dérivables en x_0 , on a

$$\frac{f(x)}{g(x)} = \frac{f(x_0) + f'(x_0)(x - x_0) + o(x - x_0)}{g(x_0) + g'(x_0)(x - x_0) + o(x - x_0)}$$

$$= \frac{f'(x_0)(x - x_0) + o(x - x_0)}{g'(x_0)(x - x_0) + o(x - x_0)}$$

$$= \frac{f'(x_0) + \frac{o(x - x_0)}{(x - x_0)}}{g'(x_0) + \frac{o(x - x_0)}{(x - x_0)}} \xrightarrow{x \to x_0} \frac{f'(x_0)}{g'(x_0)}.$$

Remarques

Pour que la limite des ratios de dérivées soit bien définie, il faut que g' soit non-zéro proche de x_0 (sur $(x_0 - \epsilon, x_0 + \epsilon) \setminus \{x_0\}$ pour un $\epsilon > 0$).

Si $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$ est une indéterminée de la forme $\frac{\infty}{\infty}$ ou $\frac{0}{0}$, et que f', g' sont dérivables en x_0 , on peut utiliser l'Hospital pour calculer la limite du ratio des dérivées (et procéder de la même façon pour les ratios de dérivée d'ordres supérieurs).

Nécessité des hypothèses

- le fait que le ratio des limites est indéterminé :

$$\lim_{x\to 0}\frac{x+2}{3x+2}=\frac{2}{2}=1, \text{ mais } \lim_{x\to 0}\frac{1}{3}=\frac{1}{3}\neq 1.$$

- le fait que la limite des ratio de dérivées existe :

$$\lim_{x \to \infty} \frac{x + \sin(x)}{x} = \lim_{x \to \infty} \left(1 + \frac{\sin(x)}{x} \right) = 1,$$

mais

$$\lim_{x \to \infty} \frac{1 + \cos(x)}{1}$$

n'est pas définie.

Exemples d'application

$$f(x) = x^{n}, g(x) = e^{x}, x_{0} = +\infty,$$

$$\lim_{x \to \infty} \frac{x^{n}}{e^{x}} = \lim_{x \to \infty} \frac{nx^{n-1}}{e^{x}} = \dots = \lim_{x \to \infty} \frac{n!}{e^{x}} = 0.$$

$$f(x) = \ln(x), g(x) = \frac{1}{x}, x_{0} = 0,$$

$$\lim_{x \to 0^{+}} x \ln(x) = \lim_{x \to 0^{+}} \frac{\frac{1}{x}}{\frac{-1}{x^{2}}} = \lim_{x \to 0^{+}} -x = 0.$$

$$f(x) = e^{x} - 1, g(x) = x^{2} + x, x_{0} = 0,$$

$$\lim_{x \to 0} \frac{e^{x} - 1}{x^{2} + x} = \lim_{x \to 0} \frac{e^{x}}{2x + 1} = \frac{e^{0}}{1} = 1.$$

L'Hospital, faire autrement...

Il est souvent possible de se passer de la règle de l'Hospital.

Par exemple : avec l'Hospital

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \lim_{x \to 0} \frac{\sin(x)}{2x} = \frac{1}{2}.$$

Sans l'Hospital : par Taylor-Young avec n = 2,

$$\begin{split} \lim_{x \to 0} \frac{1 - \cos(x)}{x^2} &= \\ \lim_{x \to 0} \frac{1 - (\cos(0) + \cos'(0)x + \cos''(0)x^2 / 2 + o(x^2))}{x^2} &= \\ \lim_{x \to 0} \frac{1 - 1 + x^2 / 2 + o(x^2)}{x^2} &= \lim_{x \to 0} \frac{1}{2} + \lim_{x \to 0} \frac{o(x^2)}{x^2} &= \frac{1}{2}. \end{split}$$

L'Hospital, faire autrement...

Avantage : dans les deux cas on doit traiter la différentiabilité des fonctions considérées. Faire sans l'Hospital (quand c'est possible) évite de vérifier les hypothèses d'indéterminée de la forme 0/0 ou $\pm \infty/\pm \infty$ et d'existence de la limite des ratios de dérivée.

Application aux suites

Si une suite $(a_n)_{n\geq 1}$ est telle que $a_n = f(n)$ pour une fonction $f: [1, +\infty) \to \mathbb{R}$, on a que, si la limite $\lim_{x\to +\infty} f(x)$ est bien définie (possiblement $\pm \infty$), alors

$$\lim_{n \to \infty} a_n = \lim_{x \to \infty} f(x).$$

Par exemple, si $a_n = \sqrt{n+8}(\sin(1/n))^2$, on a $a_n = f(n)$ avec $f(x) = \sqrt{x+8}(\sin(x))^2$.

Exemple

Si
$$a_n = \sqrt{n+8}(\sin(1/n))^2$$
, on a $a_n = f(n)$ avec $f(x) = \sqrt{x+8}(\sin(x))^2$. On étudie $\lim_{x\to\infty} f(x)$. On peut ré-écrire

$$\lim_{x \to \infty} \sqrt{x+8} (\sin(1/x))^2 = \lim_{y \to 0^+} \sqrt{1+8y} \frac{(\sin(y))^2}{\sqrt{y}}$$

si la limite de droite est bien définie. On a par continuité de la racine (réciproque de fonction continue) que

$$\lim_{y \to 0^+} \sqrt{1 + 8y} = 1.$$

Exemple

Pour $\frac{(\sin(y))^2}{\sqrt{y}}$ on peut par exemple utiliser l'Hospital (indéterminée de la forme $\frac{0}{0}$) :

$$\lim_{y \to 0^+} \frac{(\sin(y))^2}{\sqrt{y}} = \lim_{y \to 0^+} 2\sqrt{y} 2\sin(y)\cos(y) = 4 \cdot 0 \cdot 0 \cdot 1 = 0$$

 $(\sqrt{x}' = \frac{1}{2\sqrt{x}}, \text{ dérivée de la réciproque}), \text{ ou ré-écrire}$

$$\lim_{y \to 0^+} \frac{(\sin(y))^2}{\sqrt{y}} = \lim_{y \to 0^+} \sqrt{y} \sin(y) \frac{\sin(y)}{y} = 0 \cdot 0 \cdot 1 = 0.$$

On obtient

$$\lim_{x \to \infty} f(x) = \lim_{y \to 0^+} \sqrt{1 + 8y} \frac{(\sin(y))^2}{\sqrt{y}} = 1 \cdot 0 = 0$$

et donc $a_n \to 0$.