chapitre sur la continuité

Intermezzo 2 : applications du

La fonction à étudier

On va regarder la fonction

$$f:(0,1) \to \mathbb{R},$$

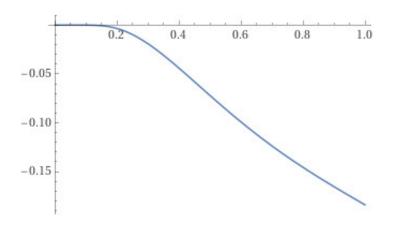
$$f(x) = \frac{1}{x^3 - 2x^2 + x - 2}e^{-1/x}$$

La fonction à étudier

On va montrer que

- 1) f est continue,
- 2) f admet des limites en 0 et 1,
- 3) f est bornée,
- 4) l'équation $f(x) = -e^{-5}$ admet au moins une solution dans (0,1).

Le graphe de la fonction



1) f est continue

On remarque que f est le ratio de deux fonctions $p, g: (0,1) \to \mathbb{R}$:

$$p(x) = x^3 - 2x^2 + x - 2$$
 et $g(x) = e^{-1/x}$.

La fonction g est la composition de la fonction $x \mapsto -1/x$, qui est continue sur (0,1), avec la fonction $x \mapsto e^x$, qui est continue sur \mathbb{R} . Elle est donc continue.

1) f est continue

On regarde la fonction p. On commence par trouver les 0 (racines) de

$$p(x) = x^3 - 2x^2 + x - 2.$$

On remarque que $p(x) = x^2(x-2) + x - 2 = (x-2)(x^2+1)$. On utilise alors la troisième identité remarquable pour trouver $x^2 + 1 = (x+i)(x-i)$ et donc

$$p(x) = (x - 2)(x + i)(x - i).$$

Les racines de p sont donc 2, i, -i, qui ne sont pas dans (0, 1).

On a alors que $f = \frac{g}{p}$ avec g, p continues et p non-nulle, ce qui donne que f est continue sur (0,1).

On a que p est la restriction d'un polynôme à (0,1). En particulier, c'est la restriction à (0,1) d'une fonction continue. On a

$$\lim_{x \to 1} p(x) = p(1) = -2, \qquad \lim_{x \to 0} p(x) = p(0) = -2.$$

À NOTER : la limite se prend à droite pour 0 et à gauche pour 1 car les x à considérer pour prendre la limite sont confinés au domaine de p, qui est (0,1).

p admet donc des limites non-zéro en 0 et en 1.

Pour la fonction g, on a que la fonction $x \mapsto 1/x$ admet une limite en 1 :

$$\lim_{x \to 1} \frac{-1}{x} = \frac{-1}{\lim_{x \to 1} x} = -1,$$

car la fonction $x\mapsto x$ admet une limite non-zéro en 1. En particulier, la fonction exp étant continue,

$$\lim_{x \to 1} e^{-1/x} = \exp(\lim_{x \to 1} -1/x) = e^{-1}.$$

La limite en 0 est un peu moins évidente. On commence par remarquer que la fonction

$$x \mapsto \frac{-1}{x}$$

définie sur (0,1) diverge vers $-\infty$ en 0.

ATTENTION : si la fonction $x \mapsto \frac{-1}{x}$ était définie sur \mathbb{R}^* , elle n'aurait pas de limite en 0, ni une divergence vers $\pm \infty$: le comportement à gauche et à droite de 0 n'est pas le même!

On remarque ensuite que la fonction $x \mapsto e^x$ admet une limite en $-\infty$:

$$\lim_{x \to -\infty} e^x = 0.$$

On obtient alors que la fonction $g:(0,1)\to\mathbb{R}, g(x)=e^{-1/x}$ admet une limite en 0:

$$\lim_{x \to 0^+} e^{-1/x} = \lim_{y \to -\infty} e^y = 0.$$

La notation 0^+ met l'emphase sur le fait que la limite ne regarde que le comportement à droite de 0.

On a obtenu que p, g admettent des limites en 0 et 1 est que ces limites sont

$$\lim_{x \to 0^+} p(x) = -2, \qquad \lim_{x \to 1^-} p(x) = -2,$$
$$\lim_{x \to 0^+} g(x) = 0, \qquad \lim_{x \to 1^-} g(x) = e^{-1}.$$

Les limites de p sont non-zéro, on a donc que la fonction $f = \frac{g}{p}$ définie sur (0,1) admet des limites en 0 et en 1 et ses limites sont données par

$$\lim_{x \to 0^+} f(x) = \frac{0}{-2} = 0, \qquad \lim_{x \to 1^-} f(x) = \frac{e^{-1}}{-2}.$$

Extension de f par continuité

On peut alors étendre f par continuité à $\tilde{f}:[0,1]\to\mathbb{R}$ en posant :

$$\tilde{f}(x) = \begin{cases} f(x) & \text{si } x \in (0,1), \\ 0 = \lim_{y \to 0^+} f(y) & \text{si } x = 0, \\ -\frac{e^{-1}}{2} = \lim_{y \to 0^+} f(y) & \text{si } x = 1. \end{cases}$$

On a alors que \tilde{f} est continue.

3) f est bornée

 \tilde{f} est continue et son domaine est un intervalle fermé et borné, donc elle est bornée par un Théorème du cours. f est la restriction de \tilde{f} à (0,1), elle est donc aussi bornée.

4) $f(x) = -e^{-5}$ admet au moins une solution

 $\tilde{f}:[0,1]\to\mathbb{R}$ est continue et satisfait

$$\tilde{f}(0) = 0 > -e^{-5} > \tilde{f}(1) = -\frac{e^{-1}}{2}.$$

Par le théorème de valeurs intermédiaires, il existe $x \in [0,1]$ tel que $\tilde{f}(x) = -e^{-5}$. De plus, comme $\tilde{f}(0) \neq -e^{-5} \neq \tilde{f}(1)$, $x \notin \{0,1\}$ et donc il existe $x \in (0,1)$ tel que

$$-e^{-5} = \tilde{f}(x) = f(x).$$

Une deuxième application

On veut montrer que $f: \mathbb{R}^* \to \mathbb{R}$, $f(x) = \sin(1/x)$ est continue mais n'admet pas de limite en 0.

Idée 1 : Composition de fonctions continues.

Idée 2 : regarder la suite $a_n = \frac{2}{n\pi}$.

Une troisième application : réciproques de fonctions trigonométriques

- sin : $[-\pi/2, \pi/2] \rightarrow [-1, 1]$ est strictement croissante et continue. Sa réciproque

$$\arcsin: [-1,1] \to [-\pi/2,\pi/2]$$

est bien définie, strictement croissante et continue.

- $\cos:[0,\pi]\to[-1,1]$ est strictement décroissante et continue. Sa réciproque

$$\arccos: [-1,1] \to [0,\pi]$$

est bien définie, strictement décroissante et continue.

- tan : $[-\pi/2, \pi/2] \to \mathbb{R}$ est strictement croissante et continue. Sa réciproque

$$\arctan: \mathbb{R} \to [-\pi/2, \pi/2]$$

est bien définie, strictement croissante et continue.

Une troisième application : réciproques de fonctions trigonométriques

arctan est un exemple de fonction strictement croissante sur \mathbb{R} et bornée (souvent utile pour les contre-exemples, voir séries)!