Calcul d'approximation de Taylor : fonctions composées

L

Approximation de Taylor : fonctions composées

On veut calculer la série de Taylor de $f = h \circ g$ en x_0 . La méthode naïve est de calculer directement les dérivées d'ordre $1, 2, 3, \ldots$ de f en utilisant la règle de la chaîne. Mais on peut faire plus simple.

Pour $n, m \ge 0$, on a les approximations de Taylor de g en x_0 et de h en $y_0 = g(x_0)$

$$g(x) = \sum_{k=0}^{m} a_k (x - x_0)^k + o((x - x_0)^m),$$

$$h(y) = \sum_{k=0}^{n} b_k (y - y_0)^k + o((y - y_0)^n),$$

où
$$a_k = \frac{g^{(k)}(x_0)}{k!}, b_k = \frac{h^{(k)}(y_0)}{k!}.$$

Approximation de Taylor : fonctions composées

Supposons que l'on cherche l'approximation de Taylor de f à l'ordre n en $x_0 = 0$ (pour simplifier les notations). On a alors

$$h(g(x)) = \sum_{k=0}^{n} b_k (\underbrace{g(x) - g(x_0)}_{\text{Taylor ordre n-k+1}})^k + o(\underbrace{(g(x) - g(x_0))^n}_{\text{Taylor ordre 0}})^n)$$

$$= \sum_{k=0}^{n} b_k \Big(\sum_{l=1}^{n-k+1} a_l x^l + o(x^{n-k+1})\Big)^k + o\Big((o(x))^n\Big).$$

On a alors $o((o(x))^n) = o(x^n)$ et

$$\left(\sum_{l=1}^{n-k+1} a_l x^l + o(x^{n-k+1})\right)^k = \sum_{r=0}^k \binom{k}{r} \left(\sum_{l=1}^{n-k+1} a_l x^l\right)^r \left(o(x^{n-k+1})\right)^{k-r}$$
$$= \left(\sum_{l=1}^{n-k+1} a_l x^l\right)^k + o(x^n).$$

Approximation de Taylor : fonctions composées

On a obtenu

$$h(g(x)) = \sum_{k=0}^{n} b_k \left(\sum_{l=1}^{n-k+1} a_l x^l \right)^k + o(x^n).$$

En particulier,

$$T_n(x; f, 0) = \sum_{k=0}^n b_k \left(\sum_{l=1}^{n-k+1} a_l x^l \right)^k.$$

Exemples

a)
$$f(x) = \sqrt{1 + \sin(x)}$$
 en $x_0 = 0$ à l'ordre 2.

- b) $f(x) = e^{-\frac{1}{(\sin(x))^2}}$ en $x_0 = 0$ à l'ordre n.
- c) $f(x) = \exp(1 + \cos(x))$ en $x_0 = \pi/2$ à l'ordre 2.

Au tableau.

On peut généraliser la méthode à des compositions de plus de deux fonctions.