

Ens: Olivier Mila Analyse I - XXX Novembre 2024 1 h 219

SCIPER: FAKE-1

Attendez le début de l'épreuve avant de tourner la page. Ce document est imprimé recto-verso, il contient 4 pages, les dernières pouvant être vides. Ne pas dégrafer.

- Posez votre carte d'étudiant sur la table.
- Aucun document n'est autorisé.
- L'utilisation d'une calculatrice et de tout outil électronique est interdite pendant l'épreuve.
- Pour les questions à choix multiple, on comptera:
 - +3 points si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - −1 point si la réponse est incorrecte.
- Pour les questions de type **vrai-faux**, on comptera:
 - +1 point si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - -1 point si la réponse est incorrecte.
- Utilisez un **stylo** à encre **noire ou bleu foncé** et effacez proprement avec du **correcteur blanc** si nécessaire.
- Si une question est erronée, l'enseignant e se réserve le droit de l'annuler.

Respectez les consignes suivantes Read these guidelines Beachten Sie bitte die unten stehenden Richtlinien		
choisir une réponse select an answer Antwort auswählen	ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen	Corriger une réponse Correct an answer Antwort korrigieren
ce qu'il ne faut <u>PAS</u> faire what should <u>NOT</u> be done was man <u>NICHT</u> tun sollte		

Première partie, questions à choix multiple

Pour chaque question marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'**une seule** réponse correcte par question.

Question 1: Soit, pour $a_0 \in \mathbb{R}$, la suite $(a_n)_{n \geq 0}$ définie pour $n \geq 1$ par $a_n = \frac{1}{2}a_{n-1} + \frac{1}{2}$.

- \square Si $a_0 > 1$, la suite est croissante.
- Si $a_0 = 0$, la suite est convergente.

Si $a_0 < 1$, la suite est décroissante.

Question 2 : Soit $(a_n)_{n\geq 1}$ la suite définie par

$$a_n = (-1)^{n+1} + \left(-\frac{1}{2}\right)^n + \frac{3}{n}.$$

Alors:

- $\lim_{n \to \infty} \inf a_n = -1 \text{ et } \lim \sup_{n \to \infty} a_n = 1$

Question 3 : Une des solutions de l'équation $z^5 = \left(1 + \sqrt{3}i\right)^2$ est

 $z = \sqrt[5]{4} \left(\cos \left(\frac{2\pi}{15} \right) + i \sin \left(\frac{2\pi}{15} \right) \right)$

- $z = \sqrt[5]{2} \left(\cos \left(\frac{2\pi}{15} \right) + i \sin \left(\frac{2\pi}{15} \right) \right)$
- $z = \sqrt[5]{2} \left(\cos \left(\frac{16\pi}{15} \right) + i \sin \left(\frac{16\pi}{15} \right) \right)$
- $z = \sqrt[5]{4} \left(\cos\left(\frac{16\pi}{15}\right) + i\sin\left(\frac{16\pi}{15}\right) \right)$

Question 4 : Soit $(u_n)_{n\geq 0}$ la suite définie par $u_0=1$ et, pour $n\geq 1,$ $u_n=-\frac{2}{3}u_{n-1}+2$. Alors :

 $\lim_{n\to\infty}u_n=\frac{6}{5}$

Question 5: Soit, pour $k \in \mathbb{N}^*$, $a_k = (-1)^k \frac{k+2}{k^3}$ et soit $s_n = \sum_{k=1}^n a_k$. Alors :

- \blacksquare la série $\sum_{k=1}^{\infty} a_k$ converge absolument
- \square la série $\sum_{k=1}^{\infty} a_k$ converge, mais ne converge pas absolument

Question 6 : Soit $(a_n)_{n\geq 1}$ la suite définie par $a_n=(-1)^n+\frac{1}{n}$, et soit $A=\{a_1,a_2,a_3,\dots\}$. Alors :

Correction

Question 7 : Soit la série avec paramètre $x \in]0,1[\,\cup\,]1,+\infty[$ définie par

$$\sum_{n=1}^{\infty} \frac{1}{(\log(x))^n} \, .$$

Alors la série converge si et seulement si

 $x \in \left]0, \frac{1}{e} \right[\cup \left]e, +\infty \right[$

Question 8 : Soit $(a_n)_{n\geq 1}$ la suite définie par $a_n=\frac{(5n+1)^n}{n^n5^n}$. Alors :

CORRECTION

Deuxième partie, questions du type Vrai ou Faux

Pour chaque question, marquer (sans faire de ratures) la case VRAI si l'affirmation est **toujours vraie** ou la case FAUX si elle **n'est pas toujours vraie** (c'est-à-dire si elle est parfois fausse).

Question 9: Soient $z_1, z_2 \in \mathbb{C}$ tels que $\operatorname{Re}(z_1 \cdot z_2) = 0$. Alors $\operatorname{Re}(z_1) \cdot \operatorname{Re}(z_2) = 0$.

\[
\begin{align*} \text{VRAI} & \begin{align*} \text{FAUX} \end{align*}
\]
Question 10: Soient A et B deux sous-ensembles bornés non-vides de \mathbb{R} . Si $\inf A > \sup B$, alors $A \cap B$ est vide.

\[
\begin{align*} \text{VRAI} & \begin{align*} \text{FAUX} \end{align*}
\]
Question 11: Soit $(a_n)_{n \geq 0}$ une suite de nombres réels non-nuls telle que $\lim_{n \to \infty} a_n = 2$. Alors $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$.

\[
\begin{align*} \text{VRAI} & \begin{align*} \text{FAUX} \end{align*}
\]
Question 12: Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction telle que $\lim_{x \to +\infty} f(x) = +\infty$ et soit $(a_n)_{n \geq 0}$ la suite définie par $a_0 = 1$ et, pour $n \geq 1$, $a_n = f(a_{n-1})$. Alors $\lim_{n \to \infty} a_n = +\infty$.

\[
\begin{align*} \text{VRAI} & \begin{align*} \text{FAUX} \end{align*}
\]
Question 13: Soit $(a_n)_{n \geq 1}$ une suite de nombres strictement négatifs. Alors, la série $\sum_{n=1}^{\infty} a_n$ converge absolument si et seulement si elle converge.

VRAI

FAUX