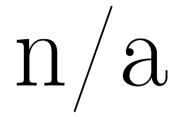


Ens: O. Mila Analyse I - (n/a) 15 janvier 2024 3h30



SCIPER: 999999

Attendez le début de l'épreuve avant de tourner la page. Ce document est imprimé recto-verso, il contient 16 pages, les dernières pouvant être vides. Ne pas dégrafer.

- Posez votre carte d'étudiant sur la table.
- Aucun document n'est autorisé.
- L'utilisation d'une **calculatrice** et de tout outil électronique est interdite pendant l'épreuve.
- Pour les questions à **choix multiple**, on comptera:
 - +3 points si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - -1 point si la réponse est incorrecte.
- Pour les questions de type **vrai-faux**, on comptera:
 - +1 point si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - -1 point si la réponse est incorrecte.
- Utilisez un **stylo** à encre **noire ou bleu foncé** et effacez proprement avec du **correcteur blanc** si nécessaire.
- Si une question est erronée, l'enseignant se réserve le droit de l'annuler.

Respectez les consignes suivantes Read these guidelines Beachten Sie bitte die unten stehenden Richtlinien		
choisir une réponse select an answer Antwort auswählen	ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen	Corriger une réponse Correct an answer Antwort korrigieren
ce qu'il ne faut <u>PAS</u> faire what should <u>NOT</u> be done was man <u>NICHT</u> tun sollte		

Première partie, questions à choix multiple

Pour chaque question marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'**une seule** réponse correcte par question.

Question 1 : Soit $(a_n)_{n>1}$ la suite définie par

$$a_n = (-1)^{n+1} + \left(-\frac{1}{2}\right)^n + \frac{3}{n}.$$

Alors:

Question 2: Soit $(a_n)_{n\geq 1}$ la suite définie par $a_n=(-1)^n+\frac{1}{n}$, et soit $A=\{a_1,a_2,a_3,\dots\}$. Alors :

$$\prod$$
 inf $A = 0$ et sup $A = \frac{3}{2}$

 \bigcap inf A = -1 et sup A = 1

 \bigcap inf A = 0 et sup A = 1

Question 3: Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) = \begin{cases} \frac{e^x - 1}{x} & \text{si } x \neq 0, \\ 1 & \text{si } x = 0. \end{cases}$$

Alors:

$$f'(0) = 1$$

 $f'(0) = \frac{1}{2}$

| f n'est pas dérivable en 0

f'(0) = e

Question 4: Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = 2^x + x^2$. Alors :

III il existe
$$c \in [2, 3[$$
 tel que $f'(c) = 9[$

 \Box il existe $c \in [0,1[$ tel que f'(c) = 9

$$\Box$$
 il existe $c \in]3,4[$ tel que $f'(c)=9$

il existe $c \in [1, 2]$ tel que f'(c) = 9

Question 5: L'intégrale $\int_0^{\pi} e^x \cos(2x) dx$ vaut

$$\frac{1}{5}(e^{\pi}-1)$$

$$\frac{2}{5}(e^{\pi}-1)$$

 $\downarrow 0$

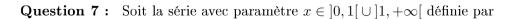
Question 6: Soit I un intervalle non-vide de \mathbb{R} , $f: I \to \mathbb{R}$ une fonction, et $\mathrm{Im}(f)$ l'ensemble image de f. Parmi les affirmations ci-dessous, laquelle est vraie pour tous les choix possibles de I et de f?

Si I est fermé et borné et si Im(f) est ouvert, alors f n'est pas continue sur I.

Si I est borné et si Im(f) est fermé et si f est continue sur I, alors I est fermé.

Si I est fermé et borné et si Im(f) est fermé, alors f est continue sur I.

Si I est borné et si Im(f) est borné, alors f est continue sur I.



$$\sum_{n=1}^{\infty} \frac{1}{(\log(x))^n} \, .$$

Alors la série converge si et seulement si

$$x \in [e, +\infty[$$

$$x \in \left[0, \frac{1}{e}\right] \cup \left[e, +\infty\right]$$

Question 8: L'intégrale $\int_0^2 \frac{1}{x^2 + 3x + 2} dx$ vaut

$$\blacksquare \log \left(\frac{3}{2}\right)$$

Question 9 : Une des solutions de l'équation $z^5 = \left(1 + \sqrt{3}\,\mathrm{i}\right)^2$ est

Question 10 : Soit $f \colon [0,\pi] \to \mathbb{R}$ la fonction définie par

$$f(x) = (x+1)\sin(x) + \cos(x) + e^{\sin(x)}$$
.

Alors, l'ensemble image de f est

$$[0, 2 + \pi + e]$$

$$\left[0, 1 + \frac{\pi}{2} + e\right]$$

Question 11 : Le domaine de convergence de la série entière

$$\sum_{n=0}^{\infty} \frac{4^n}{n+1} (x-1)^n$$

est

Question 12 : Soit $(x_n)_{n\geq 1}$ la suite définie par

$$x_n = \left(\cos\left(\sqrt{\frac{2}{n}}\right)\right)^n.$$

Alors la limite $\lim_{n\to\infty} x_n$ vaut

Question 13 : Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) = \begin{cases} \frac{\sin(x)}{|x|} & \text{si } x \neq 0, \\ 1 & \text{si } x = 0. \end{cases}$$

Alors:

- f est continue sur \mathbb{R} , mais pas dérivable en x=0
- $\int f$ est dérivable en x=0
- f est dérivable à droite en x=0
- $\lim_{x\to 0} f(x)$ existe mais f n'est pas continue en x=0

Question 14: Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = e^{1+x-\cos(x)}$. Le développement limité d'ordre 3 de f autour de $x_0 = 0$ est donné par

- $f(x) = 1 x + x^2 \frac{2}{3}x^3 + x^3\varepsilon(x)$
- $f(x) = 1 + x + x^2 + \frac{2}{3}x^3 + x^3\varepsilon(x)$
- $f(x) = 1 x + \frac{1}{3}x^3 + x^3\varepsilon(x)$
- $f(x) = 1 + x \frac{1}{3}x^3 + x^3\varepsilon(x)$

Question 15: Soit $(u_n)_{n\geq 0}$ la suite définie par $u_0=1$ et, pour $n\geq 1$, $u_n=-\frac{2}{3}u_{n-1}+2$. Alors :

Question 16 : Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) = \begin{cases} |4 - x^2| & \text{si } x \le 0, \\ 4|x^2 - 1| & \text{si } x > 0. \end{cases}$$

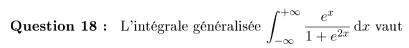
Alors:

- | | f n'est pas continue en x=1
- $\int f$ n'est pas continue en x=0
- $\int f$ n'est pas continue en x=-2
- f est continue sur \mathbb{R}

Question 17: Soit, pour $k \in \mathbb{N}^*$, $a_k = (-1)^k \frac{k+2}{k^3}$ et soit $s_n = \sum_{k=1}^n a_k$. Alors:

- \blacksquare la série $\sum_{k=1}^{\infty} a_k$ converge absolument

- \square la série $\sum_{k=1}^{\infty} a_k$ converge, mais ne converge pas absolument



 \blacksquare $\frac{\pi}{2}$

 \square $\arctan\left(\frac{1}{2}\right)$

Deuxième partie, questions du type Vrai ou Faux

Pour chaque question, marquer (sans faire de ratures) la case VRAI si l'affirmation est **toujours** vraie ou la case FAUX si elle n'est pas toujours vraie (c'est-à-dire si elle est parfois fausse).

Question 19: Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction telle que $\lim_{x \to +\infty} f(x) = +\infty$ et soit $(a_n)_{n \ge 0}$ la suite définie par $a_0 = 1$ et, pour $n \ge 1$, $a_n = f(a_{n-1})$. Alors $\lim_{n \to \infty} a_n = +\infty$.

VRAI FAUX

Question 20: Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction strictement monotone. Alors f est surjective.

VRAI FAUX

Question 21 : La fonction $f : \mathbb{R} \to \mathbb{R}$ définie par $f(t) = \int_0^t |x| \, dx$ est dérivable en t = 0.

VRAI FAUX

Question 22 : Si la série entière $\sum_{k=0}^{\infty} a_k (x-5)^k$ converge pour x=2, alors elle converge pour x=6.

■ VRAI FAUX

Question 23: Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction avec le développement limité d'ordre 2 autour de $x_0 = 0$ donné par $f(x) = a + bx + cx^2 + x^2 \varepsilon(x)$, où $a, b, c \in \mathbb{R}$. Si f est dérivable en $x_0 = 0$, alors f'(0) = b.

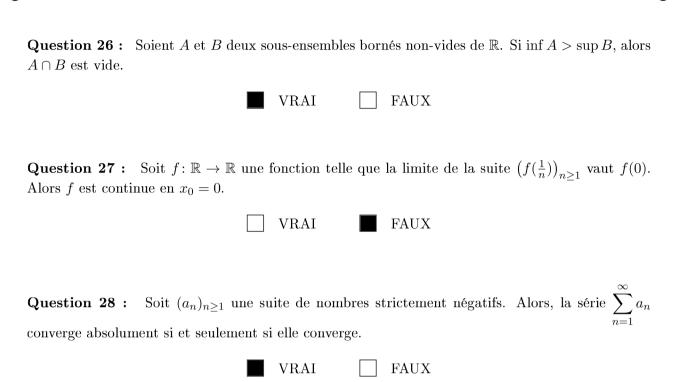
VRAI FAUX

Question 24: Soient $z_1, z_2 \in \mathbb{C}$ tels que $\operatorname{Re}(z_1 \cdot z_2) = 0$. Alors $\operatorname{Re}(z_1) \cdot \operatorname{Re}(z_2) = 0$.

VRAI FAUX

Question 25: Soit $f:]0,1[\to \mathbb{R}$ une fonction continue. Si $\lim_{x\downarrow 0} f(x) = 0$ et $\lim_{x\uparrow 1} f(x) = 0$, alors f est bornée.

■ VRAI FAUX



15.01.2023

Question 29:

(a) $C^5(\mathbb{R})$ est l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ qui sont 5 fois dérivables, et telles que la 5ième dérivée $f^{(5)}: \mathbb{R} \to \mathbb{R}$ est continue.

(b)
$$\sum_{k=0}^{\infty} \frac{e^7}{k!} (x-7)^k = e^7 \sum_{k=0}^{\infty} \frac{1}{k!} (x-7)^k$$
$$= e^7 + e^7 (x-7) + \frac{e^7}{2} (x-7)^2 + \frac{e^7}{3!} (x-7)^3 + \frac{e^7}{4!} (x-7)^4 + \cdots$$

Question 30:

(a) Si k=0, on a $\lim_{x\downarrow 0}x^{100}=0^{100}=0$ par continuité de x^{100} . Si k>0, on a, par continuité de $(\dots)^k$ et Bernoulli-L'Hospital:

$$\lim_{x \downarrow 0} x^{100} \log(x)^k = \left(\lim_{x \downarrow 0} \frac{\log(x)}{x^{-100/k}}\right)^k \stackrel{\text{BH}}{=} \left(\lim_{x \downarrow 0} \frac{1/x}{(-100/k)x^{-100/k-1}}\right)^k$$
$$= \left(\lim_{x \downarrow 0} -\frac{k}{100}x^{100/k}\right)^k = 0^k = 0.$$

Alternatives:

• Changement de variable $y = \frac{1}{x}$, donc $x \downarrow 0 \Rightarrow y \rightarrow +\infty$:

$$\lim_{x\downarrow 0} x^{100} \log(x)^k = \lim_{y\to +\infty} \frac{\log(\frac{1}{y})^k}{y^{100}} = \lim_{y\to +\infty} \left(\frac{-\log(y)}{y^p}\right)^k \quad \text{avec } p = \frac{100}{k}.$$

Puis utiliser un résultat du cours $\lim_{x\to +\infty} \frac{x^p}{\log(x)} = +\infty$ si p>0 (ou alors Bernoulli-L'Hospital) pour montrer que $\lim_{y\to +\infty} \frac{-\log(y)}{y^p} = 0$.

• Changement de variable: $y = \log(x)$, donc $x \downarrow 0 \Rightarrow y \to -\infty$:

$$\lim_{x \downarrow 0} x^{100} \log(x)^k = \lim_{y \to -\infty} (e^y)^{100} y^k \stackrel{t = -y}{=} \lim_{t \to +\infty} \frac{(-t)^k}{e^{100t}},$$

puis utiliser que $e^x \ge x^{k+1}$ pour k assez grand (résultat vu en cours et/ou exercices) pour conclure que $\left|\frac{(-t)^k}{e^{100t}}\right| \le \frac{t^k}{(100t)^{k+1}} \longrightarrow 0$.

(b) Une intégration par parties donne

$$\int_{0^{+}}^{1} x^{99} \log(x)^{n} dx = \lim_{u \downarrow 0} \int_{u}^{1} \underbrace{x^{99}}_{\uparrow} \underbrace{\log(x)^{n}}_{\uparrow} dx$$

$$= \lim_{u \downarrow 0} \left[\frac{x^{100}}{100} \log(x)^{n} \right]_{u}^{1} - \lim_{u \downarrow 0} \int_{u}^{1} \frac{x^{100}}{100} \cdot n \log(x)^{n-1} \cdot \frac{1}{x} dx$$

$$= 0 - \frac{1}{100} \underbrace{\lim_{u \downarrow 0} u^{100} \log(u)^{n}}_{=0 \text{ par (a)}} - \frac{n}{100} \lim_{u \downarrow 0} \int_{u}^{1} x^{99} \log(x)^{n-1} dx$$

$$= -\frac{n}{100} \int_{0^{+}}^{1} x^{99} \log(x)^{n-1} dx = -\frac{n}{100} \mathbf{I}_{n-1}.$$

- (c) Initialisation (n=0): $\mathbf{I}_0 = \int_{0^+}^1 x^{99} \, dx = \left[\frac{x^{100}}{100}\right]_0^1 = \frac{1}{100} = (-1)^0 \frac{0!}{100^{0+1}}$. Pas de récurrence $(n \to n+1)$: $\mathbf{I}_{n+1} \stackrel{\text{(b)}}{=} -\frac{n+1}{100} \cdot \mathbf{I}_n \stackrel{\text{(*)}}{=} -\frac{n+1}{100} \cdot (-1)^n \frac{n!}{100^{n+1}} = (-1)^{n+1} \frac{(n+1)!}{100^{n+2}}$, où l'on a utilisé l'hypothèse de récurrence en (*).
- (d) La série divergre. On peut soit voir directement que le terme général \mathbf{I}_n ne converge pas vers 0, soit utiliser d'Alembert:

$$\rho = \lim_{n \to \infty} \left| \frac{\mathbf{I}_{n+1}}{\mathbf{I}_n} \right| = \lim_{n \to \infty} \frac{(n+1)!}{100^{n+2}} \cdot \frac{100^{n+1}}{n!} = \lim_{n \to \infty} \frac{n+1}{100} = +\infty > 1.$$