

Ens: O. Mila Analyse I - XXX 16 janvier 2023 3h30 297

SCIPER: FAKE-9 Signature:

Attendez le début de l'épreuve avant de tourner la page. Ce document est imprimé recto-verso, il contient 16 pages (les dernières pouvant être vides), et 30 questions. Ne pas dégrafer.

- Posez votre carte d'étudiant sur la table.
- Aucun document n'est autorisé.
- L'utilisation d'une **calculatrice** et de tout outil électronique est interdite pendant l'épreuve.
- Pour les questions à choix multiple, on comptera:
 - +3 points si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - -1 point si la réponse est incorrecte.
- Pour les questions de type **vrai-faux**, on comptera:
 - +1 point si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - -1 point si la réponse est incorrecte.
- Utilisez un **stylo** à encre **noire ou bleu foncé** et effacez proprement avec du **correcteur blanc** si nécessaire.
- Si une question est erronée, l'enseignant se réserve le droit de l'annuler.

Respectez les consignes suivantes Read these guidelines Beachten Sie bitte die unten stehenden Richtlinien								
choisir une réponse select an answer Antwort auswählen	ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen	Corriger une réponse Correct an answer Antwort korrigieren						
ce qu'il ne faut <u>PAS</u> faire what should <u>NOT</u> be done was man <u>NICHT</u> tun sollte								

Première partie, questions à choix multiple

Pour chaque question marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'une seule réponse correcte par question.

Question 1 : L'intégrale généralisée $\int_{0+}^{1} \frac{\log(x)}{x^2} dx$

converge et vaut -1

converge et vaut +1

diverge

converge et vaut -4

Question 2: Soit, pour $a_0 \in \mathbb{R}$, la suite $(a_n)_{n\geq 0}$ définie pour $n\geq 1$ par $a_n=\frac{1}{2}a_{n-1}+\frac{1}{2}a_{n-1}$

- \square Si $a_0 > 1$, la suite est croissante.
- \Box Si $a_0 = 0$, la suite est convergente.
- Si $a_0 < 1$, la suite est décroissante.

Question 3: Soit $f: \left[\frac{1}{2}, 1\right] \to \mathbb{R}$ la fonction définie par

$$f(x) = \frac{1}{x} + \frac{1}{\pi} \sin\left(\frac{\pi}{x}\right).$$

Soit I l'ensemble image de f. Alors :

- I = [1, 2]

Question 4: Soit, pour tout $k \in \mathbb{N}^*$, $a_k = (-1)^k \frac{k+1}{k^2}$, et soit $s_n = \sum_{k=1}^n a_k$. Alors:

- \square la série $\sum_{k=1}^{\infty} a_k$ converge, mais ne converge pas absolument
- $\hfill \square$ la série $\sum_{k=1}^\infty a_k$ converge absolument

$$f(x) = \begin{cases} |x| & \text{si } x \ge -1, \\ \frac{1}{2}(x^2 + 1) & \text{si } x < -1. \end{cases}$$

Alors:

	f	est	dérivable	sur	\mathbb{R}
		OD0	COLLINGOLO	DUL	11.0

 $\int f$ n'est pas continue en x = -1

f est dérivable en x = -1 et continue en x = 0

f est dérivable en x = 0 et continue en x = -1

Question 6:

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) = \begin{cases} e^{-2/|x|} & \text{si } x \neq 0, \\ 0 & \text{si } x = 0. \end{cases}$$

Alors:

$$\int f$$
 est continue mais pas dérivable en $x=0$

 $\lim_{x\to 0} f(x)$ existe mais f n'est pas continue en x=0

f est dérivable en x=0

 $\lim_{x\to 0} f(x)$ n'existe pas

Question 7: Soit $a_n = 1$ si n est pair et $a_n = 0$ si n est impair. Le rayon de convergence R de la série entière $\sum_{n=1}^{\infty} a_n x^n$

vaut 0

 \square vaut $\frac{1}{2}$

vaut 1

est infini

Question 8: Soit $I = \left[0, \frac{\pi}{2}\right]$ et $f: I \to \mathbb{R}$ la fonction définie par $f(x) = \cos(2x)$. Alors pour tous $x, y \in I$ tels que x < y on a :

$$0 \le \frac{f(y) - f(x)}{y - x} \le 2$$

Question 9: Soient $A \subset \mathbb{R}$ et $B \subset \mathbb{R}$ deux ensembles majorés. Alors :

 $\sup(A \cup B) = \min\{\sup A, \sup B\}$

 $\sup(A \cup B) = (\sup A) + (\sup B)$

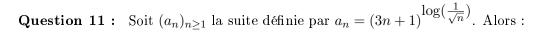
 $\sup(A \cup B) = (\sup A) \cdot (\sup B)$

Question 10: L'intégrale $\int_0^1 x^2 e^{-x} dx$ vaut

$$\square 2 - \frac{1}{e}$$

$$2-\frac{4}{e}$$

$$2-\frac{3}{e}$$



Question 12: Soit la suite $(a_n)_{n\geq 0}$ définie par $a_0=\frac{3}{2}$, et pour $n\geq 1$ par $a_n=3-\frac{2}{a_{n-1}}$. Alors :

$$\square$$
 la limite $\lim_{n\to\infty} a_n$ n'existe pas dans $\mathbb R$

$$\Box$$
 $\lim a_n = 1$

Question 13: Soient $a, b \in \mathbb{R}$ et $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) = \begin{cases} \frac{\sqrt{2}}{2} & \text{si } x \le 0, \\ \sin(ax+b) & \text{si } x > 0. \end{cases}$$

Alors f est continue sur \mathbb{R} pour :

$$a = 0$$
 et $b = -\frac{\pi}{4}$

$$a=0 \text{ et } b=\frac{\pi}{4}$$

Question 14: Les nombres complexes 3, 1-2i, et 1+2i sont les racines du polynôme

$$z^3 - 5z^2 + 5z + 45$$

$$z^3 + 14z^2 + 15$$

Question 15 : Soit $\alpha \in \mathbb{R}$. La série $\sum_{n=1}^{\infty} \left(1 + \frac{\alpha}{n}\right)^{n^2}$ converge si et seulement si

$$\bigcap -1 < \alpha < 0$$
 $\bigcap \alpha < 0$

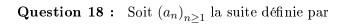
$$\alpha < -1$$

Question 16: L'intégrale $\int_0^1 \frac{2x-1}{(x-3)(x+2)} dx$ vaut

$$-1$$

 $\sqrt{6} \arctan(\frac{1}{6})$

Question 17: Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = e^x \log(1+x)$. Le développement limité d'ordre 3 de f autour de $x_0 = 0$ est donné par



$$a_n = (-1)^n \left(\frac{6n+8}{2n}\right) - 3 - \frac{4}{n}.$$

Alors:

Deuxième partie, questions du type Vrai ou Faux

Pour chaque question, marquer (sans faire de ratures) la case VRAI si l'affirmation est **toujours vraie** ou la case FAUX si elle **n'est pas toujours vraie** (c'est-à-dire si elle est parfois fausse).

Question 19 : L'intégrale $\int_{-1}^{1} e^{-\sin(x)} dx$ vaut zéro.

VRAI

Question 20 : Soient $A, B \subset \mathbb{R}$ deux ensembles non vides et bornés. Si inf $A \leq \inf B$ et $\sup A \geq \sup B$, alors $B \subset A$.

FAUX

VRAI FAUX

Question 21 : Soient $(a_n)_{n\geq 0}$, $(b_n)_{n\geq 0}$ deux suites de nombres réels telles que les séries $\sum_{n=0}^{\infty} a_n$ et

 $\sum_{n=0}^{\infty} b_n$ convergent. Alors la série $\sum_{n=0}^{\infty} a_n b_n$ converge.

☐ VRAI ☐ FAUX

Question 22 : Si $z \in \mathbb{C}$ est tel que |z| = 1, alors $z^5 + \frac{1}{z^5}$ est un nombre réel.

VRAI FAUX

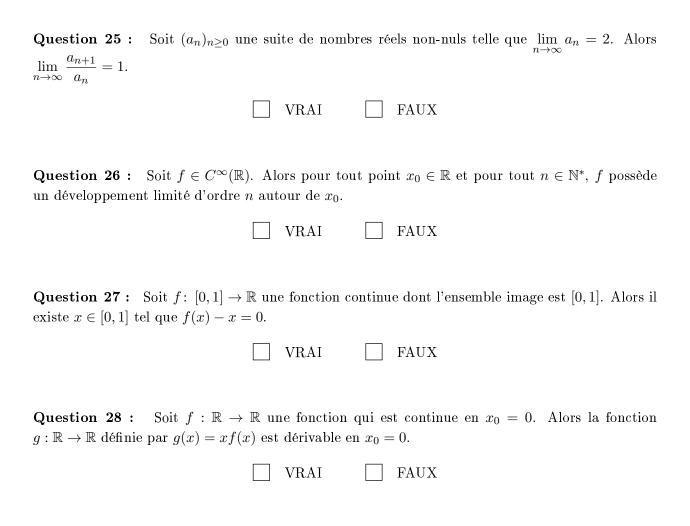
Question 23: Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction bijective et croissante. Alors la fonction réciproque $f^{-1}: \mathbb{R} \to \mathbb{R}$ est croissante.

☐ VRAI ☐ FAUX

Question 24: Soit $f \in C^1(\mathbb{R})$. Alors il existe des nombres $a, b \in \mathbb{R}$ tels que

$$\lim_{x \to 0} \frac{f(x) - a - bx}{x} = 0$$

VRAI FAUX



Troisième partie, deux questions de type ouvert

- Répondre dans l'espace dédié en utilisant un stylo (ou feutre fin) noir ou bleu foncé.
- Votre réponse doit être soigneusement justifiée: toutes les étapes de votre raisonnement doivent figurer dans votre réponse. Chaque résultat du cours utilisé doit être précisément énoncé.
- Laisser libres les cases à cocher : elles sont réservées au correcteur.

Question 29 (cette question est notée sur 8 points):



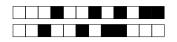
Pour $n \in \mathbb{N}$ et $n \geq 2$, on définit

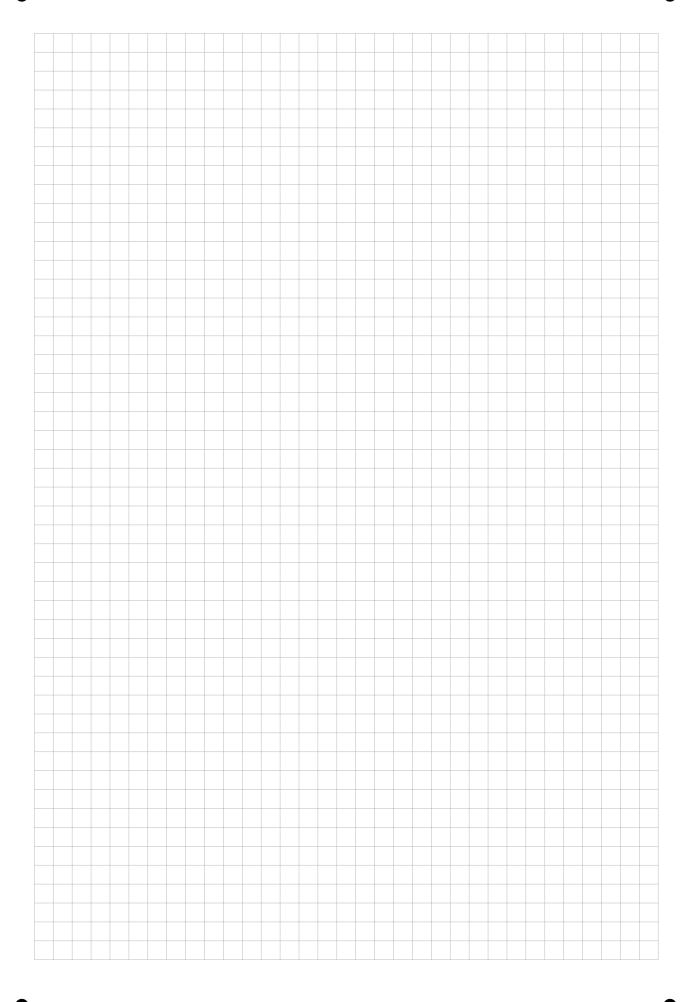
$$a_n = \int_1^{+\infty} n^{-2x} \, dx.$$

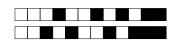
(a) Montrer (sans faire de preuve par récurrence) que

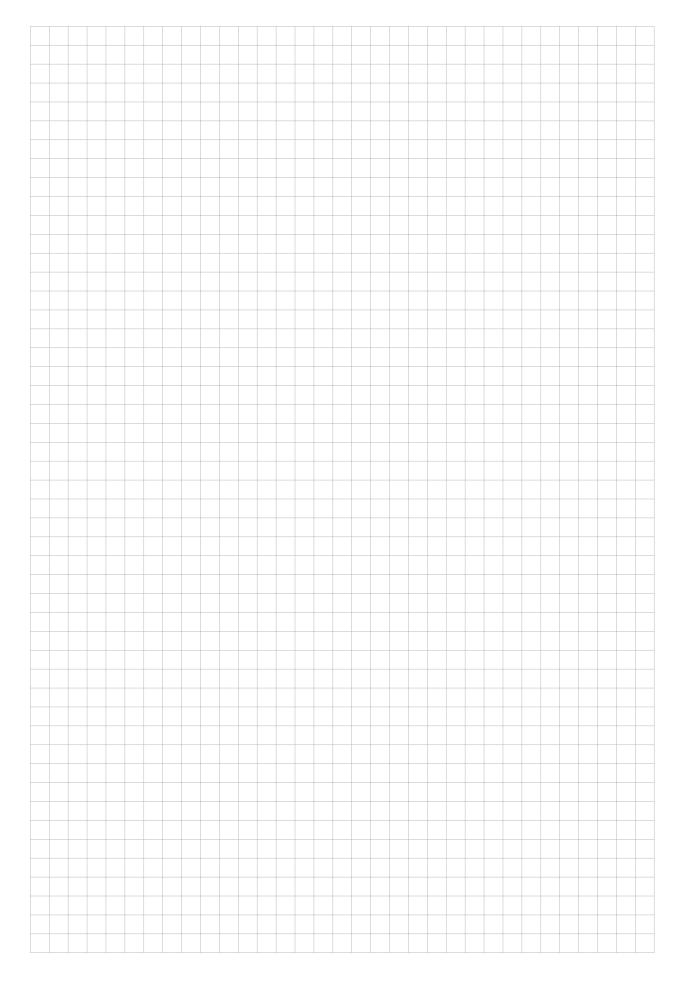
$$a_n = \frac{1}{n^2 \log(n^2)}.$$

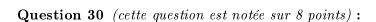
(b) La série $\sum_{n=2}^{\infty} a_n$ est-elle convergente? Justifier.











Soit $f \colon \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = xe^x - e^x.$$

(a) Montrer par récurrence que pour tout $k \geq 1$, on a

$$f^{(k)}(x) = (k-1)e^x + xe^x.$$

- (b) Écrire la série de Taylor de f centrée en a=1.
- (c) Calculer le rayon de convergence de la série calculée au point précédent. Justifier.

