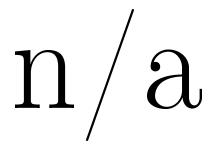


Ens: P. Wittwer Analyse I - (n/a) 13 janvier 2020 3 heures



n/a

SCIPER: 999999

Attendez le début de l'épreuve avant de tourner la page. Ce document est imprimé recto-verso, il contient 16 pages (les dernières pouvant être vides), et 30 questions. Ne pas dégrafer.

- Posez votre carte d'étudiant sur la table.
- Aucun document n'est autorisé.
- L'utilisation d'une **calculatrice** et de tout outil électronique est interdite pendant l'épreuve.
- Pour les questions à choix multiple, on comptera:
 - +3 points si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - -1 point si la réponse est incorrecte.
- Pour les questions de type vrai-faux, on comptera:
 - +1 point si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - -1 point si la réponse est incorrecte.
- Utilisez un **stylo** à encre **noire ou bleu foncé** et effacez proprement avec du **correcteur blanc** si nécessaire.
- Si une question est erronée, l'enseignant se réserve le droit de l'annuler.

Respectez les consignes suivantes Read these guidelines Beachten Sie bitte die unten stehenden Richtlinien									
choisir une rép Antw	onse seled ort auswäh		ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen					Corriger une réponse Correct an answer Antwort korrigieren	
X	\checkmark								
ce qu'il ne faut <u>PAS</u> faire what should <u>NOT</u> be done was man <u>NICHT</u> tun sollte									
					0				

Première partie, questions à choix multiple

Pour chaque question marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'**une seule** réponse correcte par question.

Question 1: Soit
$$I = \int_0^2 \exp(x^2) dx$$
. Alors

$$2 \le I \le 200$$

$$I \ge 200$$

Question 2: Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) = \begin{cases} x \sin(e^{\frac{1}{x}} - 1) & \text{si } x \neq 0, \\ 0 & \text{si } x = 0. \end{cases}$$

Alors

- f est continue sur \mathbb{R} , et dérivable à droite mais pas à gauche en x=0.
- $\int f$ est de classe C^1 sur \mathbb{R} .
- f est dérivable sur \mathbb{R} , mais f' n'est pas continue sur \mathbb{R} .
- f est continue sur \mathbb{R} , et dérivable à gauche mais pas à droite en x=0.

Question 3: Soit, pour tout $n \in \mathbb{N}^*$, $a_n = (\sqrt{n+2} - \sqrt{n+1}) \sin(\frac{1}{n})$. Alors

- \square la série $\sum_{n=0}^{\infty} a_n$ converge, mais ne converge pas absolument.
- \square la série $\sum_{n=0}^{\infty} a_n$ diverge.
- \square les séries $\sum_{n=1}^{\infty} a_n$ et $\sum_{n=1}^{\infty} (-1)^n a_n$ convergent.
- \square la série $\sum_{n=0}^{\infty} (-1)^n a_n$ diverge.

Question 4: Soit R le rayon de convergence de la série entière $f(x) = \sum_{n=0}^{\infty} \left(1 + \frac{1}{n^2}\right)^{\binom{n}{2}} x^n$.

 \square Si b=2, alors R=1.

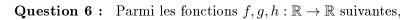
 \square Si b=1, alors $R=e^{-1}$

 \square Si b=3, alors R=e.

 \square Si b=4, alors $R=e^2$.

Question 5: Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = |x \cos(x)|$.

- f est croissante sur $\left]0,\frac{\pi}{2}\right[$.
- | Sur \mathbb{R} , f possède un unique point de minimum local.
- Il existe $u \in \left] -\frac{\pi}{8}, \frac{\pi}{8} \right[$ tel que f'(u) = 0.



$$f(x) = \begin{cases} \sqrt{x} \sin(\frac{1}{x}) & \text{si } x > 0 \\ -\sqrt{-x} & \text{si } x \le 0 \end{cases}, \qquad g(x) = \begin{cases} x \sin(\frac{1}{x}) & \text{si } x > 0 \\ 0 & \text{si } x \le 0 \end{cases},$$

$$h(x) = \begin{cases} \sqrt{x} \operatorname{Arctg}\left(\frac{1}{x}\right) & \text{si } x > 0\\ x \operatorname{Log}(|x|) & \text{si } x < 0\\ 0 & \text{si } x = 0 \end{cases},$$

déterminer celles qui sont continues en x = 0:

$$\bigcap g$$
 et h

$$\bigcap f$$
 et g

toutes les trois

 $\int f \operatorname{et} h$

Question 7: Soit l'intégrale définie $I = \int_1^2 x \log(1+x) dx$. Alors

$$I = 2 \operatorname{Log}(3) - \frac{1}{2} \operatorname{Log}(2)$$

$$I = \frac{1}{2} \operatorname{Log}(2) + \frac{1}{4}$$

$$I = 2 \operatorname{Log}(3) + \frac{1}{2} \operatorname{Log}(2)$$

$$I = \frac{3}{2} \operatorname{Log}(3) - \frac{1}{4}$$

Question 8: Soit $f: [1, +\infty[\to \mathbb{R} \text{ la fonction définie par } f(x) = \sin(\operatorname{Arctg}(\sqrt{x}))$. Alors l'ensemble image de f est égal à

$$\left[\left[\frac{\sqrt{2}}{2}, 1 \right] \right]$$

Question 9 : Pour quelles valeurs de $a,b \in \mathbb{R}$ la fonction $f : \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = \begin{cases} (ax+1)(bx-1) & \text{si } x \ge 0, \\ \sin(a^2x) - b & \text{si } x < 0, \end{cases}$$

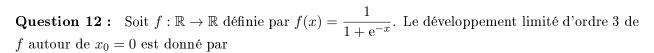
est-elle dérivable en x = 0?

Question 10 : La partie imaginaire de $\left(-1+i\sqrt{3}\right)^5$ est

Question 11: La limite $\lim_{n\to\infty} \frac{\sqrt{n}}{\sqrt{5n+\sqrt{3n-\sqrt{2n}}}}$

$$\square$$
 existe et vaut $\frac{1}{\sqrt{5}}$

$$\square$$
 existe et vaut $\frac{1}{\sqrt{6}}$



$$f(x) = \frac{1}{2} - \frac{x}{4} - \frac{x^3}{48} + x^3 \varepsilon(x)$$

$$f(x) = \frac{1}{2} + \frac{x}{4} + \frac{x^3}{48} + x^3 \varepsilon(x)$$

$$f(x) = \frac{1}{2} + \frac{x}{4} - \frac{x^3}{48} + x^3 \varepsilon(x)$$

$$f(x) = \frac{1}{2} + \frac{x}{4} - \frac{x^3}{24} + x^3 \varepsilon(x)$$

Question 13 : Soit $(a_n)_{n\geq 1}$ la suite définie ainsi: pour tout $n\geq 1$,

$$a_n = \sin\left(\frac{\pi}{4} + n\frac{\pi}{2}\right) + \cos\left(\frac{\pi}{4} + n\frac{\pi}{2}\right).$$

Alors

$$\lim \sup_{n \to \infty} a_n = 2 \quad \text{et } \liminf_{n \to \infty} a_n = -2$$

$$\lim \sup_{n \to \infty} a_n = 0 \quad \text{et } \liminf_{n \to \infty} a_n = -\sqrt{2}$$

Question 14 : La série numérique $\sum_{n=1}^{\infty} \frac{1}{\sqrt[5]{n^{\frac{2}{\alpha}}(n^{2\alpha}+1)}}$ converge si

$$\frac{1}{2} < \alpha < 1$$

$$\alpha = \frac{1}{2}$$

$$0 < \alpha < \frac{1}{2}$$

Question 15: Soit $x_0 \in \mathbb{R}$ et, pour tout $n \in \mathbb{N}$, $x_{n+1} = x_n - \frac{1}{3^n}$. Alors

- pour tout $x_0 \in \mathbb{R}$, la suite $(x_n)_{n \geq 0}$ converge vers x_0 .
- pour tout $x_0 \in \mathbb{R}$, la suite $(x_n)_{n \geq 0}$ converge vers 0.
- pour tout $x_0 \in \mathbb{R}$, la suite $(x_n)_{n\geq 0}$ converge vers $x_0 \frac{3}{2}$.
- pour tout $x_0 \in \mathbb{R}$, la suite $(x_n)_{n\geq 0}$ est divergente.

Question 16: L'intégrale généralisée $\int_{1}^{\infty} \frac{x^{3/2} + 3}{x^3} dx$

diverge

 \Box converge et vaut $-\frac{7}{2}$

converge et vaut $\frac{8}{3}$

| | converge et vaut $\frac{7}{2}$

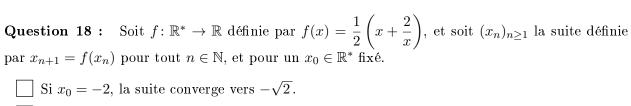
Question 17: Soit $A = \left\{ x \in \mathbb{R}_+^* \setminus \{1\} : \frac{1}{\operatorname{Log}(x)} < 1 \right\}$. Alors

Inf A = 0

A n'est pas minoré

 $\sup A = e$

 $\int \inf A = e$



- \square Si $x_0 = \frac{1}{\sqrt{2}}$, la suite converge vers $-\sqrt{2}$.
- \square Si $x_0 = 1$, la suite converge vers $-\sqrt{2}$.
- Il n'existe aucun $x_0 \in \mathbb{R}^*$ pour lequel la suite converge vers $-\sqrt{2}$.

Deuxième partie, questions du type Vrai ou Faux

Pour chaque question, marquer (sans faire de ratures) la case VRAI si l'affirmation est **toujours vraie** ou la case FAUX si elle **n'est pas toujours vraie** (c'est-à-dire si elle est parfois fausse).

Question 19 : Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) = \begin{cases} x^2 & \text{si } x \in \mathbb{Q} \\ x & \text{si } x \notin \mathbb{Q} \end{cases}$$

Alors f est continue en exactement deux points.

VRAI FAUX

Question 20: Une fonction strictment croissante $f:[0,1] \to [0,1]$ est toujours bijective.

VRAI FAUX

Question 21 : Le rayon de convergence de la série entière $f(x) = \sum_{k=0}^{+\infty} (3x)^k$ vaut 3.

☐ VRAI ☐ FAUX

Question 22: Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction monotone, et soit $x_0 \in \mathbb{R}$ tel que

$$\lim_{x \to x_0 -} f(x) = f(x_0).$$

Alors f est dérivable à gauche en x_0 .

☐ VRAI ☐ FAUX

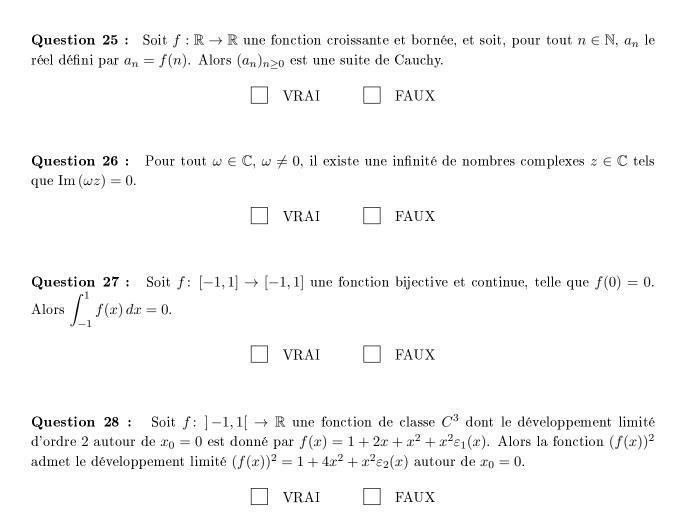
Question 23 : Soit $(a_n)_{n\geq 0}$ une suite de nombres réels positifs. Si $\sum_{n=0}^{\infty} a_n$ converge, alors

$$\sum_{n=0}^{\infty} (-1)^n a_n \text{ converge.}$$

VRAI FAUX

Question 24: Soit $f: \mathbb{R} \to \mathbb{R}$. Si f est dérivable en x_0 , alors la fonction $g: \mathbb{R} \to \mathbb{R}$ définie par $g(x) = \sin(f(x))$ est également dérivable en x_0 .

☐ VRAI ☐ FAUX

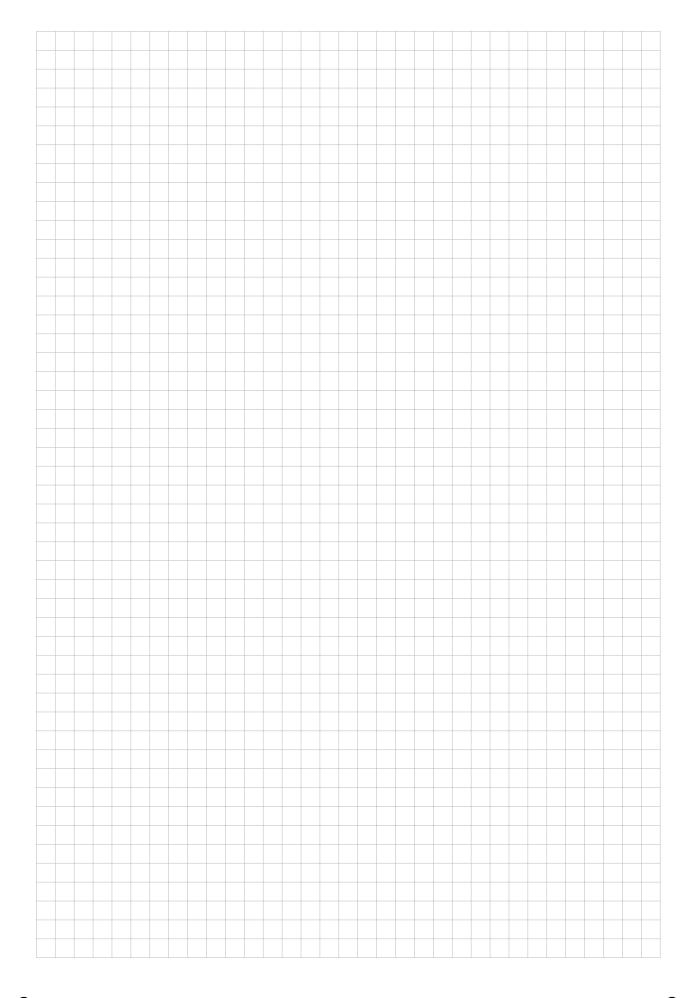


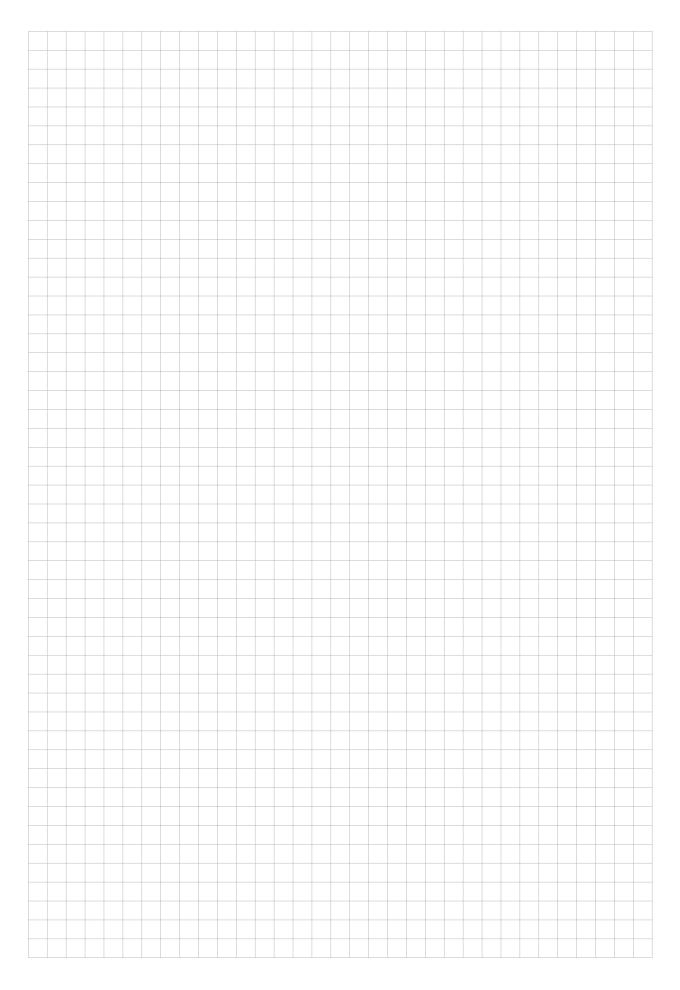
Troisième partie, deux questions de type ouvert

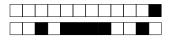
- Répondre dans l'espace dédié en utilisant un stylo (ou feutre fin) noir ou bleu foncé.
- Votre réponse doit être soigneusement justifiée: toutes les étapes de votre raisonnement doivent figurer dans votre réponse.
- Laisser libres les cases à cocher: elles sont réservées au correcteur.

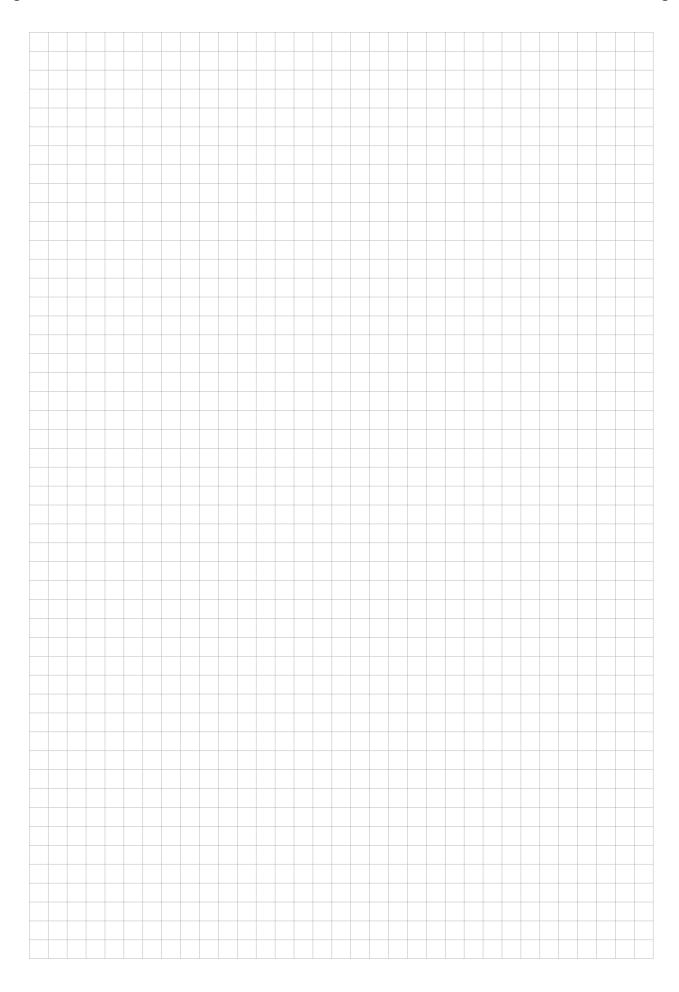
Question 29: Cette question est notée sur 8 points.

- (a) Démontrer par récurrence que $\forall n \in \mathbb{N}^*, \ \sum_{k=1}^n (2k) = n^2 + n.$
- (b) Calculer la partie réelle et la partie imaginaire de toutes les solutions complexes de l'équation $z^2 = 1 + 4i$.
- (c) Soit $(a_n)_{n\geq 0}$ une suite de nombres réels. Donner la définition de la convergence de la suite vers $\ell\in\mathbb{R}$.
- (d) En partant de la définition montrer qu'une suite convergente est bornée.









Question 30: Cette question est notée sur 8 point.

0 1 2 3 4 5 6 7 8

Réservé au correcteur

Étudier la fonction $f \colon [-\pi, \pi] \to \mathbb{R}$ définie par $f(x) = |\sin(x)| e^{-x}$. C'est-á-dire :

- (a) Déterminer le cas échéant la parité de f, ou indiquer "pas de symétrie".
- (b) Trouver les zéros de f.
- (c) Trouver la fonction dérivée f' avec son domaine de définition.
- (d) Trouver les intervalles de monotonicité stricte de la fonction f.
- (e) Trouver tous les points d'extremums locaux de f.
- (f) Trouver le minimum m, le maximum M, et l'image de la fonction f.
- (g) Trouver tous les points d'inflexion de la fonction f.
- (h) Trouver les intervalles de convexité et de concavité de la fonction f.

