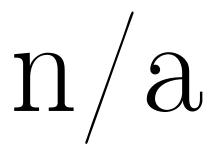
Ens. G. Favi - Analyse I - (n/a)

14 janvier 2019 - durée: 3 heures



SCIPER: 999999

Attendez le début de l'épreuve avant de tourner la page. Ce document est imprimé recto-verso, il contient 12 pages, les dernières pouvant être vides. Ne pas dégrafer.

- Posez votre carte d'étudiant sur la table.
- Aucun document n'est autorisé.
- L'utilisation d'une calculatrice et de tout outil électronique est interdite pendant l'épreuve.
- Pour les questions à **choix multiple**, on comptera:
 - +3 points si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - -1 point si la réponse est incorrecte.
- Pour les questions de type **vrai-faux**, on comptera:
 - +1 point si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - -1 point si la réponse est incorrecte.
- Utilisez un stylo à encre noire ou bleu foncé et effacez proprement avec du correcteur blanc si nécessaire.
- Si une question est erronée, l'enseignant se réserve le droit de l'annuler.

Respectez les consignes suivantes Observe this guidelines Beachten Sie bitte die unten stehenden Richtlinien					
choisir une réponse select an answer Antwort auswählen	ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen	Corriger une réponse Correct an answer Antwort korrigieren			
ce qu'il ne faut <u>PAS</u> faire what should <u>NOT</u> be done was man <u>NICHT</u> tun sollte					

Première partie, questions à choix multiple

Pour chaque question marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'**une seule** réponse correcte par question.

${f Question}$ [QCM-complexes-B]: Soit S l'ensembl ${ m Alors}$:	le des solutions de l'équat	ion complexe $\overline{z}^2 = z^2$.
	$egin{array}{c} S = \emptyset \ S = \mathbb{R} \end{array}$	
${f Question}$ [QCM-contin-deriv-C1-B] : Soit $f:{f I}$	$\mathbb{R} o \mathbb{R}$ la fonction définie	par f(x) = x cos(x) .
☐ f est continue sur \mathbb{R} , mais pas dérivable en x ☐ f est dérivable en $x=0$, mais pas en $x=\frac{\pi}{2}+$ ☐ f n'est pas deux fois dérivable en $x=0$ ☐ f est infiniment dérivable sur \mathbb{R}		
${f Question}$ [QCM-contin-vs-derivab-B]: Soit $p \in$	\mathbb{R} et $f: \mathbb{R} \to \mathbb{R}$ la fonction	n définie par
$f(x) = \begin{cases} x ^p \operatorname{Log}(0) \\ 0 \end{cases}$	(x) si $x \neq 0$, si $x = 0$.	
Si $p = \frac{6}{5}$, alors f est dérivable en $x = 0$. Si $p = \frac{1}{2}$, alors f n'est pas continue en $x = 0$. Si $p = \frac{3}{2}$, alors f n'est pas dérivable en $x = 0$. Si $p = \frac{2}{3}$, alors f est continue à droite en $x = 0$.		
Question [QCM-dev-limite-A]: Le polynôme de $\frac{1}{1-\sin(x)}$ est	Taylor d'ordre 4 autour de	0 de la fonction $f(x) =$
	$1 + x + x^2 + \frac{5}{6}x^3 + $	•
Question [QCM-induction-A-2]: Soit $(u_n)_{n\geq 0}$ by $\frac{1+2u_n}{2+u_n}$. Alors:	a suite définie par $u_0=0$	et, pour $n \ge 0$, $u_{n+1} =$
	$(u_n)_{n\geq 0}$ est décroissa $\frac{1}{2} < u_n \leq 1$ pour tou	
Question [QCM-inf-sup-E]: Soit A le sous-ensemalors:	nble de $\mathbb R$ défini par $A=\Big\{$	$\left\{x > 0 : \cos\left(\frac{1}{x}\right) > 0\right\}.$
		$\prod \operatorname{Inf} A = \frac{2}{\pi}$

CATALOGUE

Question [QCM-int-generalisee-A]: L'intégrale impropre $I = \int_{0^+}^{\frac{\pi}{6}} \frac{\cos(x)}{\sqrt{\sin(x)}} dx$
converge, et sa valeur est $I = \sqrt{2}$ converge, et sa valeur est $I = \frac{1}{2} \operatorname{Log}(\frac{1}{2})$ diverge, car $\lim_{\varepsilon \to 0^+} \operatorname{Log}(\sqrt{\sin(\varepsilon)}) = -\infty$ diverge, car $\frac{\cos(x)}{\sqrt{\sin(x)}}$ n'est pas définie en $x = 0$
Question [QCM-integrale-first-A]: Soit l'intégrale définie $I = \int_2^3 \frac{x^2 - 2x + 1}{x^2 + 2x + 1} \mathrm{d}x$. Alors: $I = \frac{4}{3} - 4 \operatorname{Log}(\frac{4}{3})$ $I = \operatorname{Log}(2) + \frac{1}{2}$ $I = \frac{5}{3} - 4 \operatorname{Log}(\frac{3}{2})$ $I = 2 \operatorname{Log}(2) + 1$
Question [QCM-integrale-second-A]: Soit l'intégrale définie $I=\int_{1}^{3}\frac{1}{\sqrt{x}\left(1+x\right)}\mathrm{d}x.$ Alors:
$I = 2\left(\operatorname{Arctg}\left(\sqrt{3}\right) - \frac{\pi}{4}\right)$ $I = \frac{1}{2}\left(\operatorname{Arctg}(3) - \frac{\pi}{4}\right)$ $I = \frac{1}{2}\left(\operatorname{Arctg}(3) - \frac{\pi}{4}\right)$ $I = \sqrt{3} - 1 + \operatorname{Log}(2)$
Question [QCM-limite-prolongmt-B] : Soit $m \in \mathbb{R}$, et soit $f : \mathbb{R} \to \mathbb{R}$ la fonction définie par
$f(x) = \begin{cases} \frac{\sin^2(x)}{\log(1+2x^2)} & \text{si } x < 0 , \\ m & \text{si } x = 0 , \\ \frac{x+1}{x^2+3x+1} & \text{si } x > 0 . \end{cases}$ $\blacksquare \text{ Si } m = \frac{1}{2}, \text{ alors } f \text{ est continue à gauche mais pas à droite en } x = 0.$ $\blacksquare \text{ Si } m = \frac{1}{3}, f \text{ est continue à droite mais pas à gauche en } x = 0.$
\square Si $m = 1$, alors f est continue en $x = 0$. \square Si $m = \frac{1}{2}$, alors f est continue en $x = 0$.
Question [QCM-limsup-liminf-B]: Soit $(x_n)_{n\geq 1}$ la suite définie par $x_n=\sqrt[n]{7}$ si n est pair et $x_n=\frac{1}{n^7}$ si n est impair. Alors:
$ \lim_{n \to \infty} \sup x_n = 1 \text{ et } \lim_{n \to \infty} \inf x_n = 0 \lim_{n \to \infty} \sup x_n = \lim_{n \to \infty} \inf x_n = 0 \lim_{n \to \infty} \sup x_n = \lim_{n \to \infty} \inf x_n = 1 \lim_{n \to \infty} \sup x_n = \lim_{n \to \infty} \inf x_n = 1 \lim_{n \to \infty} \sup x_n = \lim_{n \to \infty} \inf x_n = 1 $
Question [QCM-propriete-fonction-A]: Soit la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = e^{\frac{x^4}{4} + \frac{x^2}{2}}$ Alors:
f possède un seul point de minimum local dans \mathbb{R} f possède un seul point de maximum local dans \mathbb{R} f est strictement croissante sur \mathbb{R} f est strictement décroissante sur \mathbb{R}

CATALOGUE

Question [QCM-serie-B]: Soit $\lambda = -\frac{1}{6}$. Déterminer, parmi les séries ci-dessous, celle qui converge.

$$\blacksquare \sum_{n=1}^{\infty} \left(\frac{\lambda+1}{\lambda-1}\right)^n \qquad \qquad \Box \sum_{n=1}^{\infty} \left(\frac{1}{1-\lambda^2}\right)^n \qquad \qquad \Box \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\lambda^n} \qquad \qquad \Box \sum_{n=1}^{\infty} \frac{1}{n^{1+\lambda}}$$

Question [QCM-serie-entiere-A]: Soit $f: \mathbb{R} \setminus \{-\frac{2}{3}\} \to \mathbb{R}$ la fonction définie par $f(x) = \frac{4}{2+3x}$. La série de Taylor de f autour de x = 2 est:

$$\prod f(x) = \sum_{k=0}^{\infty} \left(-\frac{3}{8}\right)^k (x-2)^k \text{ pour } x \in \left[1, 3\right]$$

Question [QCM-serie-parametre-B]: Soit s un paramètre réel, et soit $(b_n)_{n\geq 1}$ la suite définie par $b_n = \frac{1}{n^s}$ si n est pair, $b_n = \frac{1}{n^{2s}}$ si n est impair. Alors la série $\sum_{n=1}^{\infty} b_n$ converge si et seulement si

Question [QCM-suites-convergence-A]: Soit $(x_n)_{n\geq 1}$ la suite définie par $x_n=\frac{2^{2n}}{(7n)!}$. Lorsque $n \to \infty$, cette suite

converge vers 0

 \square converge vers $\frac{4}{7}$

diverge

 \square converge vers $\frac{\text{Log}(2)}{7}$

Question [QCM-suites-recurrence-B]: Soit $(a_n)_{n\geq 0}$ la suite définie par $a_0=\frac{3}{2}$, et pour $n\geq 0$, $a_{n+1} = \frac{1}{2} + \frac{1}{2}\sqrt{8a_n - 7}$. Alors:

la suite est divergente

Question [QCM-theo-accr-finis-B]: Soit $f:]-3,2[\to \mathbb{R}$ la fonction définie par $f(x)=x^2+4x-1$. Alors pour tous les $x \in]-3,2[$ et $y \in]-3,2[$, tels que $x \neq y,$ on a:

$$-2 \le \frac{f(x) - f(y)}{x - y} \le 8$$

Deuxième partie, questions du type Vrai ou Faux

Pour chaque question, marquer (sans faire de ratures) la case VRAI si l'affirmation est **toujours vraie** ou la case FAUX si elle **n'est pas toujours vraie** (c'est-à-dire si elle est parfois fausse).

Question [TF-complexes-C]: Soit $z \neq 0$ un nombre complexe dont l'argument vaut $\frac{\pi}{4}$. Alors l'argument du nombre complexe $\frac{1}{z^2}$ vaut $-\frac{\pi}{2}$.

VRAI FAUX

Question [TF-derivabilite-discussion-B]: Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe C^1 , telle que l'équation f'(x) = 0 possède exactement une solution. Alors l'équation f(x) = 1 possède au plus deux solutions réelles distinctes.

VRAI FAUX

Question [TF-dev-limite-B]: Soit $f:]-1,1[\to \mathbb{R}$ une fonction de classe C^5 dont le développement limité d'ordre 4 en x=0 est donné par

$$f(x) = 1 + x - x^{2} + x^{3} - x^{4} + x^{4}\varepsilon(x),$$

où $\lim_{x\to 0} \varepsilon(x) = 0$. Alors $f'(0) + 3f^{(2)}(0) + f^{(3)}(0) = 1$.

VRAI FAUX

Question [TF-fonction-etc-B]: Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction bijective. Alors f est strictement monotone.

VRAI FAUX

Question [TF-induction-suites-limites-A]: Soit $(x_n)_{n\geq 0}$ la suite définie par $x_0=2$ et, pour $n\geq 1,$ $x_n=x_{n-1}-\frac{1}{n}$. Alors $(x_n)_{n\geq 0}$ est convergente.

VRAI FAUX

Question [TF-inf-sup-B] : Soit $A \subset \mathbb{R}$ un ensemble borné, et $B = \{x \in \mathbb{R} : x \text{ est un majorant de } A\}$. Alors $\inf B \in B$.

VRAI FAUX

Question [TF-integrale-B]: La fonction $g:[-1,1]\to\mathbb{R}$ définie par $g(x)=\int_0^{|x|}1\,\mathrm{d}t$ est dérivable en x=0.

VRAI FAUX

CATALOGUE

Question [TF-limites-continuite-A]: Soit $f: [-2,20] \to [0,1]$ une fonction continue. Alore existe $x \in [0,1]$ tel que $f(x) = x$.	s il
VRAI FAUX	
Question [TF-serie-AA]: La série numérique $\sum_{n=1}^{\infty} \sin\left(\frac{1}{n^2}\right)$ converge.	
VRAI FAUX	
∞ <i>1</i> -	
Question [TF-serie-entiere-B]: La série entière $\sum_{k=100}^{\infty} \frac{x^k}{k!}$ converge pour tout $x \in \mathbb{R}$.	
■ VRAI ☐ FAUX	