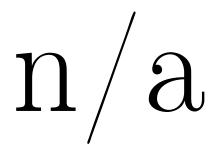
Ens. G. Favi - Analyse I - (n/a)

14 janvier 2019 - durée: 3 heures



SCIPER: 999999

Attendez le début de l'épreuve avant de tourner la page. Ce document est imprimé recto-verso, il contient 12 pages, les dernières pouvant être vides. Ne pas dégrafer.

- Posez votre carte d'étudiant sur la table.
- Aucun document n'est autorisé.
- L'utilisation d'une calculatrice et de tout outil électronique est interdite pendant l'épreuve.
- Pour les questions à **choix multiple**, on comptera:
 - +3 points si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - -1 point si la réponse est incorrecte.
- Pour les questions de type **vrai-faux**, on comptera:
 - +1 point si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - -1 point si la réponse est incorrecte.
- Utilisez un stylo à encre noire ou bleu foncé et effacez proprement avec du correcteur blanc si nécessaire.
- Si une question est erronée, l'enseignant se réserve le droit de l'annuler.

	Respectez les consignes suivantes Observe this guidelines Beachten Sie bitte die unten stehenden Richtlinien								
choisir une réponse select an answer Antwort auswählen			ne réponse NOT s HT Antwort auswäh	Corriger une réponse Correct an answer Antwort korrigieren					
	X								
	ce qu'il ne faut <u>PAS</u> faire what should <u>NOT</u> be done was man <u>NICHT</u> tun sollte								

Première partie, questions à choix multiple

Pour chaque question marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'une seule réponse correcte par question.

Question 1: L'intégrale impropre $I = \int_{0+}^{\frac{\pi}{6}} \frac{\cos(x)}{\sqrt{\sin(x)}} dx$

$$I = \int_{0+}^{\frac{\pi}{6}} \frac{\cos(x)}{\sqrt{\sin(x)}} \, \mathrm{d}x$$

converge, et sa valeur est $I=\sqrt{2}$

diverge, car $\lim_{\varepsilon \to 0^+} \text{Log}(\sqrt{\sin(\varepsilon)}) = -\infty$

diverge, car $\frac{\cos(x)}{\sqrt{\sin(x)}}$ n'est pas définie en x=0

 \square converge, et sa valeur est $I = \frac{1}{2} \operatorname{Log}(\frac{1}{2})$

Question 2: Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = x |\cos(x)|$. Alors :

 $\int f$ n'est pas deux fois dérivable en x=0

f est infiniment dérivable sur \mathbb{R}

f est continue sur \mathbb{R} , mais pas dérivable en x=0

 $\int f$ est dérivable en x=0, mais pas en $x=\frac{\pi}{2}+k\pi, k\in\mathbb{Z}$

Question 3: Soit la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = e^{\frac{x^4}{4} + \frac{x^2}{2}}$. Alors:

f possède un seul point de maximum local dans \mathbb{R}

f est strictement croissante sur \mathbb{R}

f possède un seul point de minimum local dans $\mathbb R$

f est strictement décroissante sur \mathbb{R}

Question 4: Soit $\lambda = -\frac{1}{6}$. Déterminer, parmi les séries ci-dessous, celle qui converge.

Question 5 : Soit $(a_n)_{n\geq 0}$ la suite définie par $a_0=\frac{3}{2}$, et pour $n\geq 0$, $a_{n+1}=\frac{1}{2}+\frac{1}{2}\sqrt{8a_n-7}$. Alors :

la suite est divergente

Question 6 : Soit $m \in \mathbb{R}$, et soit $f : \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) = \begin{cases} \frac{\sin^2(x)}{\log(1+2x^2)} & \text{si } x < 0, \\ m & \text{si } x = 0, \\ \frac{x+1}{x^2+3x+1} & \text{si } x > 0. \end{cases}$$

Si m=1, alors f est continue en x=0.

Si $m = \frac{1}{3}$, f est continue à droite mais pas à gauche en x = 0.

 \square Si $m = \frac{1}{2}$, alors f est continue en x = 0.

 \square Si $m = \frac{1}{2}$, alors f est continue à gauche mais pas à droite en x = 0.

Question 7 : Soit l'intégrale défini	e $I = \int_2^3 \frac{x^2 - 2x + 1}{x^2 + 2x + 1} dx$. Alors:								
$I = \frac{5}{3} - 4\operatorname{Log}(\frac{3}{2})$ $I = \operatorname{Log}(2) + \frac{1}{2}$									
Question 8: Soit $f:]-3, 2[\rightarrow \mathbb{R}$ $x \in]-3, 2[$ et $y \in]-3, 2[$, tels que x	la fonction définie par $f(x) = x^2 + 4x - 1$. Al $\neq y$, on a:	ors pour tous les							
Question 9 : Soit $p \in \mathbb{R}$ et $f : \mathbb{R} \to \mathbb{R}$ la fonction définie par									
f(x)	$= \begin{cases} x ^p \operatorname{Log}(x) & \text{si } x \neq 0, \\ 0 & \text{si } x = 0. \end{cases}$								
Si $p = \frac{6}{5}$, alors f est dérivable of Si $p = \frac{3}{2}$, alors f n'est pas dérivable Si $p = \frac{1}{2}$, alors f n'est pas conto Si $p = \frac{2}{3}$, alors f est continue à	vable en $x = 0$.								
Question 10: Soit S l'ensemble d	es solutions de l'équation complexe $\overline{z}^2 = z^2$. Al-	ors:							
		$\operatorname{Im}(z) = 0$							
Question 11: Soit s un paramètr	e réel, et soit $(b_n)_{n\geq 1}$ la suite définie par $b_n=$	$\frac{1}{n^s}$ si n est pair,							
$b_n = \frac{1}{n^{2S}}$ si n est impair. Alors la sé	rie $\sum_{n=1}^{\infty} b_n$ converge si et seulement si								
		s > 0							
Question 12 : Le polynôme de Ta	ylor d'ordre 4 autour de 0 de la fonction $f(x)$	$= \frac{1}{1 - \sin(x)} \text{ est}$							
$1 + x + 2x^2 + 3x^3 + 4x^2$									
Question 13 : Soit $(x_n)_{n\geq 1}$ la sui Alors :	te définie par $x_n = \sqrt[n]{7}$ si n est pair et $x_n = \frac{1}{n^7}$	$\frac{1}{7}$ si n est impair.							
		$_{\cdot}=0$							
$ \lim_{n \to \infty} \lim \sup_{n \to \infty} x_n = \lim_{n \to \infty} \inf_{n \to \infty} x_n = 0 $	$ \prod_{n \to \infty} \limsup_{n \to \infty} x_n = 0 \text{ et } \liminf_{n \to \infty} x_n $								

Question 14 : Soit $f: \mathbb{R} \setminus \{-\frac{2}{3}\} \to \mathbb{R}$ la fonction définie par $f(x) = \frac{4}{2+3x}$. La série de Taylor de f autour de x = 2 est:

$$[] f(x) = \sum_{k=0}^{\infty} (-\frac{3}{8})^k (x-2)^k \text{ pour } x \in]1,3[$$

Question 15 : Soit $(u_n)_{n\geq 0}$ la suite définie par $u_0=0$ et, pour $n\geq 0$, $u_{n+1}=\frac{1+2u_n}{2+u_n}$. Alors :

 \square $(u_n)_{n\geq 0}$ est décroissante

Question 16 : Soit l'intégrale définie $I = \int_{1}^{3} \frac{1}{\sqrt{x}(1+x)} dx$. Alors :

 $I = \sqrt{3} - 1 + \operatorname{Log}(2)$

 $I = \frac{1}{2} \left(\operatorname{Arctg}(3) - \frac{\pi}{4} \right)$

 $I = 2(\sqrt{3} - 1) + \operatorname{Log}(2)$

 $I = 2(\operatorname{Arctg}(\sqrt{3}) - \frac{\pi}{4})$

Question 17 : Soit A le sous-ensemble de \mathbb{R} défini par $A = \left\{x > 0 : \cos\left(\frac{1}{x}\right) > 0\right\}$. Alors :

- $\prod \, \operatorname{Inf} A = 0$

Question 18 : Soit $(x_n)_{n\geq 1}$ la suite définie par $x_n = \frac{2^{2n}}{(7n)!}$. Lorsque $n\to\infty$, cette suite

converge vers 0

diverge

 \square converge vers $\frac{4}{7}$

 \square converge vers $\frac{\text{Log}(2)}{7}$

Deuxième partie, questions du type Vrai ou Faux

Pour chaque question, marquer (sans faire de ratures) la case VRAI si l'affirmation est **toujours vraie** ou la case FAUX si elle **n'est pas toujours vraie** (c'est-à-dire si elle est parfois fausse).

Question 19 : Soit $f:]-1,1[\to \mathbb{R}$ une fonction de classe C^5 dont le développement limité d'ordre 4 en x=0 est donné par

$$f(x) = 1 + x - x^{2} + x^{3} - x^{4} + x^{4}\varepsilon(x),$$

où $\lim_{x\to 0} \varepsilon(x) = 0$. Alors $f'(0) + 3f^{(2)}(0) + f^{(3)}(0) = 1$.

_		 1
	VRAI	FAUX

Question 20 : Soit $(x_n)_{n\geq 0}$ la suite définie par $x_0=2$ et, pour $n\geq 1,\ x_n=x_{n-1}-\frac{1}{n}$. Alors $(x_n)_{n\geq 0}$ est convergente.

☐ VRAI ☐ FAUX

Question 21 : La série entière $\sum_{k=100}^{\infty} \frac{x^k}{k!}$ converge pour tout $x \in \mathbb{R}$.

☐ VRAI ☐ FAUX

Question 22: Soit $f: [-2, 20] \to [0, 1]$ une fonction continue. Alors il existe $x \in [0, 1]$ tel que f(x) = x.

☐ VRAI ☐ FAUX

Question 23 : La série numérique $\sum_{n=1}^{\infty} \sin\left(\frac{1}{n^2}\right)$ converge.

☐ VRAI ☐ FAUX

Question 24 : Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe C^1 , telle que l'équation f'(x) = 0 possède exactement une solution. Alors l'équation f(x) = 1 possède au plus deux solutions réelles distinctes.

☐ VRAI ☐ FAUX

Question 25 : Soit $A \subset \mathbb{R}$ un ensemble borné, et $B = \{x \in \mathbb{R} : x \text{ est un majorant de } A\}$. Alors Inf $B \in B$.

VRAI FAUX

