Relation entre fonction et dérivées

Soit $f: I \to \mathbb{R}$ une fonction réelle, avec I = intervalle. On suppose $x_1, x_2 \in I$.

Concept	Définition	Condition sur f'	Condition sur f''
f est croissante sur I	$\forall x_1 < x_2, \ f(x_1) \le f(x_2)$	$\forall x \ f'(x) \ge 0$	
f est décroissante sur I	$\forall x_1 < x_2, \ f(x_1) \ge f(x_2)$	$\forall x \ f'(x) \le 0$	
f est convexe sur I	$\forall x_1 < x_2 \ \forall \lambda \in [0, 1]$ $f((1 - \lambda)x_1 + \lambda x_2)) \le (1 - \lambda)f(x_1) + \lambda f(x_2)$	f' est croissante sur I	$\forall x \ f''(x) \ge 0$
f est concave sur I	$\forall x < x_2 \ \forall \lambda \in [0, 1]$ $f((1 - \lambda)x_1 + \lambda x_2)) \ge (1 - \lambda)f(x_1) + \lambda f(x_2)$	f' est décroissante sur I	$\forall x \ f''(x) \le 0$

Remarque: Une condition suffisante pour que f soit strictement croissante (resp. strictement décroissante) est: $\forall x$ il existe un entier impair $n \ge 1$, tel que $f^{(k)}(x) = 0$ pour tout $1 \le k < n$ et $f^{(n)}(x) > 0$ (resp. $f^{(n)}(x) < 0$).

Concept $(x_0 \in I)$	Définition	Condition <i>nécessaire</i> sur les dérivées	Condition suffisante sur les dérivées
f a un maximum local en x_0	$\exists \delta > 0 \text{ tel que}$ $ x - x_0 \le \delta \Rightarrow f(x_0) \ge f(x)$	$f'(x_0) = 0$ ou n'existe pas	$f'(x_0) = 0 \text{ et } f''(x_0) < 0$
f a un minimum local en x_0	$\exists \delta > 0 \text{ tel que}$ $ x - x_0 \le \delta \Rightarrow f(x_0) \le f(x)$	$f'(x_0) = 0$ ou n'existe pas	$f'(x_0) = 0 \text{ et } f''(x_0) > 0$
f a un extremum local en x_0	f a un minimum local ou un maximum local en x_0		
f a un point stationaire en x_0	$f'(x_0) = 0$		
f a un point d'inflexion en x_0	$f'(x_0)$ existe et f change de concavité en x_0	$f''(x_0) = 0$ ou n'existe pas	$f''(x_0) = 0$ et $f^{(3)}(x_0) \neq 0$

Remarque: La condition suffisante pour un maximum local (resp. un minimum local) peut être remplacée par la condition plus générale: il existe un entier pair $n \ge 2$, tel que $f^{(k)}(x_0) = 0$ pour tout $1 \le k < n$ et $f^{(n)}(x_0) > 0$ (resp. $f^{(n)}(x_0) < 0$). La condition suffisante pour un point d'inflexion peut être remplacée par la condition plus générale: il existe un entier impair $n \ge 3$, tel que $f^{(k)}(x_0) = 0$ pour tout $2 \le k < n$ et $f^{(n)}(x_0) \ne 0$.