Exercice 1.

Soit $A \subseteq \mathbb{R}$ non-vide et borné. Montrer que $x = \sup A$ (resp. $x = \inf A$) si et seulement si x est un majorant (resp. minorant) de A et s'il existe une suite $(a_n) \subseteq A$ telle que $a_n \longrightarrow x$. Utiliser ce résultat pour refaire l'exercice $3(d) \rightarrow (i)$ de la série 2.

Exercice 2.

Soit (a_n) une suite. En utilisant la définition de convergence avec ε , montrer que si $a_n \ge 0$ et $\lim_{n \to \infty} a_n = a \ge 0$, alors $\lim_{n \to \infty} \sqrt{a_n} = \sqrt{a}$.

Exercice 3.

Calculer les limites lorsque $n \to \infty$ des suites suivantes, si elles existent.

(a)
$$\frac{\sqrt{n^2+2}}{2n}$$
 (d) $\sqrt{n^2+2} - \sqrt{n^2+3}$ (h) $\frac{(3n+8)\cos(6n^2+n+1)}{n^2+2n+6}$ (b) $\frac{n^2}{2^n}$ (e) $\sqrt{n^2-1}-(n-1)$ (f) $n\left(\sqrt{n^4+6n-3}-n^2\right)$ (i) $\frac{\sin(\sqrt{n^2+2})}{2n+1}$ (j) $\sqrt[n]{n}$

Exercice 4.

Exercise 4. En utilisant le fait que
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$$
, calculer les limites suivantes:

(a) $\lim_{n\to\infty} \left(1+\frac{2}{n}\right)^n$

(b) $\lim_{n\to\infty} \left(1-\frac{1}{n}\right)^n$

(c) $\lim_{n\to\infty} \left(1-\frac{1}{n^2}\right)^n$

Exercice 5.

Calculer $\liminf_{n\to\infty} a_n$ et $\limsup_{n\to\infty} a_n$ dans les cas suivants:

(a)
$$a_n = (-3)^{-n} - \left(\frac{1}{-2}\right)^n$$
.
(b) $a_n = \operatorname{Re}(e^{i2\pi n/3})$
(c) $a_n = \left(1 + \frac{(-1)^n}{n}\right)^n$.
(d) $a_n = \frac{\cos(\pi n)}{\frac{1}{2} + \cos(\frac{\pi n}{2})}$
(e) $a_n = \sqrt{n} - \lfloor \sqrt{n} \rfloor$
(où $\lfloor x \rfloor = \text{le plus grand entier} \leq x$)

Exercice 6.

Vrai ou faux?

(a)
$$\lim_{n\to\infty} a_n = 0$$
 si et seulement si $\lim_{n\to\infty} |a_n| = 0$.

(b) Si
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$$
, alors (a_n) diverge.

(c) Si
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$$
, alors (a_n) converge.

(d)
$$\lim_{n\to\infty} |a_n - a| = 0$$
 si et seulement si $\lim_{n\to\infty} a_n = a$.

(e) Si
$$\lim_{n\to\infty} a_n = +\infty$$
, alors a_n est croissante.

(f) Si
$$\lim_{n\to\infty} a_n = +\infty$$
 et $\lim_{n\to\infty} b_n = +\infty$, alors $\lim_{n\to\infty} \frac{a_n}{b_n} = 1$.

(g) Si
$$(a_n b_n)$$
 converge et $\lim_{n\to\infty} b_n = 0$, alors (a_n) converge.

(h) Si
$$(a_n b_n)$$
 converge et $\lim_{n\to\infty} b_n = \ell \neq 0$, alors (a_n) converge.

(i) Si
$$\limsup_{n\to\infty} |a_n| = 0$$
, alors $\lim_{n\to\infty} a_n = 0$.

(j) Si
$$\liminf_{n\to\infty} |a_n| = 0$$
, alors $\lim_{n\to\infty} a_n = 0$.

Exercice 7.

Étudier la convergence des suites définies par récurrence suivantes, et calculer leur limite si elles existent.

(a)
$$a_0 = 2, a_{n+1} = \frac{a_n + 3}{4}$$

(c)
$$a_0 = 1, a_{n+1} = \frac{7}{3} - \frac{1}{1 + a_n}$$

(b)
$$a_0 = 1, a_{n+1} = \frac{1}{2}(2 - 3a_n)$$
 (d) $a_0 = \frac{5}{2}, a_{n+1} = \frac{a_n^2 + 6}{5}$

(d)
$$a_0 = \frac{5}{2}, a_{n+1} = \frac{a_n^2 + 6}{5}$$