Analyse I

Série 4

EPFL - Sections SIE/GC/SC

2.10.2024

Exercice 1.

Démontrer les assertions suivantes par récurrence.

- (a) Si $a_0 = c$ et $a_{n+1} = a_n + b$, alors $a_n = bn + c$ pour tout $n \in \mathbb{N}$.
- (b) Si $a_1 = 1$ et $a_{n+1} = \frac{a_n}{a_n + 1}$, alors $a_n = \frac{1}{n}$ pour tout $n \in \mathbb{N}^*$.
- (c) $(x-1)(x^{n-1} + x^{n-2} + \dots + x + 1) = x^n 1$ pour tout $x \in \mathbb{C}$ et $n \in \mathbb{N}^*$.

Exercice 2.

On rappelle que la factorielle de $n \in \mathbb{N}$ est $n! = n(n-1)(n-2)\cdots 3\cdot 2\cdot 1$, et que 0! = 1 par convention. Pour $k, n \in \mathbb{Z}$, on définit le coefficient binomial comme

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
 si $0 \le k \le n$, et $\binom{n}{k} = 0$ sinon.

Montrer que:

(a)
$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$$
. (b) $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$ pour $x, y \in \mathbb{C}$. (Formule du $Bin\hat{o}me\ de\ Newton$.)

Exercice 3.

Démontrer les formules suivantes:

(a)
$$\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$$
 (b) $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$ (c) $\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$

(d)
$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$
 (e) $\sum_{k=0}^{n} \binom{n-k}{k} = f_{n+1}$ où (f_n) est la suite de Fibonacci.

Exercice 4.

Le but de cet exercice est de montrer que la suite de Fibonacci $(f_n)_{n\in\mathbb{N}}$ définie par $f_0=0,\ f_1=1,\ \mathrm{et}\ f_{n+2}=f_{n+1}+f_n$ est donnée par la formule

$$f_n = \frac{\alpha^n - \beta^n}{\sqrt{5}},$$
 où $\alpha = \frac{1 + \sqrt{5}}{2}$ et $\beta = \frac{1 - \sqrt{5}}{2}.$

- (a) Montrer que α et β vérifient l'équation $x^2 = x + 1$.
- (b) En déduire qu'ils vérifient aussi l'équation $x^{n+2} = x^{n+1} + x^n$.
- (c) Montrer que toute suite de la forme $a_n = c \cdot \alpha^n + d \cdot \beta^n$ vérifie $a_{n+2} = a_{n+1} + a_n$.
- (d) Conclure (en utilisant une preuve par récurrence forte).

Exercice 5.

Soit (a_n) une suite.

- (a) Montrer que $a_n \longrightarrow a \Leftrightarrow |a_n a| \longrightarrow 0$.
- (b) Si $a_n \longrightarrow a$, démontrer que $|a_n| \longrightarrow |a|$.
- (c) Trouver un exemple où $|a_n| \longrightarrow |a|$, mais où (a_n) diverge.

Exercice 6.

Soient (a_n) et (b_n) deux suites convergentes, avec $\lim_{n\to\infty} a_n = a$ et $\lim_{n\to\infty} b_n = b$. On suppose que $b_n \neq 0$ pour tout $n \in \mathbb{N}$ et $b \neq 0$. Montrer que :

(a)
$$\lim_{n\to\infty} \frac{1}{b_n} = \frac{1}{b}$$
.

(b)
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$$
.

Exercice 7.

Pour les suites suivantes, déterminer si elles sont (strictement) (dé)croissantes, bornées, convergentes. Si elles convergent, calculer leur limite lorsque $n \to \infty$.

(a)
$$a_n = \left(\frac{1}{2}\right)^n$$
.

(f)
$$a_n = \frac{n-1}{3n^2+1}$$
 $(n \ge 1)$

(b)
$$a_n = 2n^2 - \frac{1}{n} \quad (n \ge 1)$$

(g)
$$a_n = \frac{(n-1)^2}{3n^2+1}$$
 $(n \ge 1)$

(c)
$$a_n = \frac{3n}{n+2}$$

(h)
$$a_n = (-1)^n \frac{\sqrt[4]{n}}{\sqrt[3]{n}} \quad (n \ge 1)$$

(d)
$$a_n = \frac{5n^2 + 3n + 7}{3n^2 + 7}$$

(i)
$$a_n = \sqrt{n+1} - \sqrt{n}$$

(e)
$$a_n = \frac{3n^2 + 1}{n - 1}$$
 $(n \ge 2)$

$$(j) a_n = \frac{n^2}{2^n}$$

Exercice 8.

Vrai ou faux?

- (a) Si (a_n) est bornée, alors a_n converge.
- (b) Si $\lim_{n\to\infty} a_n = 0$, alors $\lim_{n\to\infty} a_n \sin(17n) = 0$.
- (c) Si (a_n) converge vers a, alors $|a_n a| < 10^{30}$ pour tout $n \in \mathbb{N}$.
- (d) Si $(a_n + 3b_n)$ converge, alors (a_n) et (b_n) convergent.
- (e) Si (a_n+3b_n) converge, alors au moins une des deux suites (a_n) et (b_n) converge.